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Abstract 
Many types of computer software are currently available for the numerical modeling of monolithic RC structures; however, the accuracy of the 
numerical models created with the programs can only be acceptable by using a well-developed modeling method. We present the behavior of 
monolithic RC frame corners and beam to column joints for quasi-static and cyclic lateral loads, using numerical models created by our modeling 
method. Several laboratory experiments have already been carried out to investigate the failure of the joints and the behavior of these unique 
connections. In this paper, we made three-dimensional nonlinear FE body models with different reinforcement shapes, based on actual laboratory 
tests. We present the behavior of the joints in case of monotonic increasing quasi-static and cyclic changing loads. The results of laboratory 
experiments found in the literature and finite element calculations are compared and the conclusions that can be drawn from them are summarized 
within this article. 
 
Keywords: frame corner, beam-column joints, nonlinear finite element analysis, ATENA 3D software, monotonic increasing load, cyclic lateral load. 
 

Introduction 
 
Nowadays, research engineers are conducting numerical tests in a number of topics to analyze the behavior of individual 
structural elements by computer. At the same time, there is a growing demand from practicing engineers. However, in 
order to verify the numerical models and their results, it is essential to perform laboratory experiments to support the 
precision and accuracy of our numerical tests. From a practical point of view, it is important that the created numerical 
models follow the real behavior of the structure as much as possible. Therefore, our models are becoming more and 
more detailed and thus more complex. The properties of materials and material models can be used in the finite element 
software are not negligible for modeling of a cart-in-situ RC structure. So, we need to use software that can properly 
analyze the problem. The primary purpose of this article is to create various reinforced concrete frameworks (two 
perpendicular beams connecting to one node) and different column-beam joints (three perpendicular beams 
connecting to one node) using the modeling method we have developed. We examine the behavior of numerical models 
and compare the numerical results obtained with existing and available laboratory tests. The numerical experiments 
were carried out with the ATENA 3D software, which offers many possibilities for modeling monotonic increasing quasi-
static and also cyclic loads. Thus, within the framework of this article, we present the individual modeling techniques, 
their advantages, disadvantages and possible errors. 
 

State of the Art 
 
Historical review 
 
Monolithic RC frameworks are made in many domestic and international engineering practices. Since the middle of the 
20th century, many research works have been carried out and published on cast-in-situ reinforced concrete frameworks 
and on the design of certain joints in frames. There have been many laboratory experiments on the subject since the 
1910s (Kazinczy, 1917) and due to the development of information technology, even numerical studies can be found in 
the literature. In this chapter we summarize the research trends and results of the monolithic RC frame corners and 
beam-column connections found in the literature. 
 
In the Hungarian context, the first laboratory experiments were made in the 1910s regarding the design of cast-in-situ 
RC frames, including the corner joints of monolithic reinforced concrete basins (Kazinczy, 1917). During the series of 
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experiments, the effect of the reinforcement used in the corner joint and the effect of the different reinforcement 
designs was examined in terms of the load-bearing capacity. Investigations of the various reinforcement designs and 
their impact on the load-bearing capacity of the intermediate “+” shaped and the external “T” shaped beam-column 
connections of reinforced concrete buildings were the basis for several subsequent research programs (Kordina & 
Kohler, 1971). Many laboratory experiments have been conducted to investigate, among other things, the “T” shaped 
beam-column connections, in which the actual load-bearing capacity of each specimen as well as the cross-sectional 
moment-drift curve have been defined according to the designed reinforcement placing (Kordina, 1978). On the basis 
of all these, several practical recommendations have been made for each reinforcement placing, such as the required 
anchoring length of the reinforcement bars at the joint. Based on previous laboratory test results, Kordina, Teutsch & 
Wegener (1995) formulated a number of suggestions for the reinforcement of the joints of individual cast-in-situ RC 
components, which are applied by practicing engineers (Kordina, Teutsch & Wegener, 1995). The effect of the various 
reinforcing designs of the closing and opening frame corners on the load-bearing capacity has been tested with several 
analytical models that have been verified by laboratory tests. Two-dimensional finite element tests on a rod model and 
on-way monotonic increasing laboratory tests have led to the conclusion that the relationship between the concrete 
and the reinforcement bar basically determines the applicability of the finite element model. It has also been shown 
that bars with small deviations in numerical models have no adverse effect on the load bearing capacity (Morgan, 2000). 
There are several analytical models supported by laboratory experiments on opening frame corners, which can be used 
to determine that the load bearing capacity of the connection is greatly influenced by the way of conducting the 
reinforcement, the angle of the angled joint, the applied ratio of the bars and the ratio of the transverse bars in the 
same total reinforcement bar consumption (Campana, Ruiz & Muttoni, 2013). Furthermore, the use of transverse bars 
can significantly increase the load bearing capacity and deformation ability of the joint. Numerous linear and nonlinear 
finite element and analytical calculations have been made to test the opening frame corners (Szczecina & Winnicki, 
2015; Himanshu & Roshan, 2018, Windisch, 2018). Szczecina & Winnicki (2015) studied the modeling possibilities of 
cast-in-situ RC frames with 2D finite element models and analytical Strut-and Tie models (Szczecina & Winnicki, 2015). 
Based on their results, the appropriate force-displacement characteristics can be achieved in a much simpler way if we 
assume a plane deformation state during the analysis. 
 
Also, a series of laboratory tests have been carried out since the 1960s and 1970s in order to learn about the resistance 
and behavior of the relationship against earthquakes. Already in 1977, an innovative, partially prestressed beam-column 
connection was investigated by Park and Thompson (Park & Thompson, 1977). Park & Koeng (1979) conducted 
laboratory experiments on joints with novel connections, in which the beam-column joint has one more horizontal bar 
positioned in the center of the beam cross section (Park, Keong, 1979). They carried out laboratory experiments to 
examine the load-bearing capacity and ductility of the connections. In 1980, Beckingsale investigated the shear strength 
of the frame joints and the forces/stresses that awakened in reinforcement bars for various reinforcement designs 
(Beckingsale, 1980). It was concluded that in the so-called poorly ironed frame corner connections where no transversal 
reinforcement is placed, shear failure is expected. Earthquake resistance, and most notably energy dissipating zones 
have a significant impact on the bars used in the column (Pessiki, Conley, Gergely & White, 1990). Analytical models 
were designed to calculate the shear strength of an interior beam-column connection of an RC structure with which 
resistance to seismic effects was determined by the Strut-and-Tie model (Hwang & Lee, 1999, Lowes, Mitra & 
Altoontash, 2003). With the Strut-and-Tie model they defined, only the cover graph of the force-displacement curve can 
be specified. Most of the research that the researchers are conducting today deals with the potential for retrofitting on 
structures. Based on laboratory experiments on various damaged beam-column connections, tests were carried out by 
using external steel sheets, GFRP plates, and HPFRCC strengthening (Engindeniz, Kahn & Zureick, 2005; Parra-
Montesinos, Peterfreund & Chao, 2005). Numerical experiments were performed on prestressed RC beam-column 
connections to investigate the load-bearing capacity and ductility of the joints (Ashtiani, Dhakal & Scott, 2018; Yan, Xiao, 
Lin & Niu, 2018). Numerical tests on a similar topic were completed by Arjamadi & Yousefi (2018) (Arjamadi & Yousefi, 
2018). Their model is three-dimensional, taking into account the cyclic properties of the concrete, but the slipping of 
the bars and the effect of the reinforcement placing, which significantly modifies the load-bearing capacity of the joints, 
cannot be modeled. In general, there are many research programs on the subject; a large number of laboratory 
experiments and their results are available. It should be noted, however, that even in the most recent publications, a 
large number of laboratory experiments (Rahman, Dirar, Jemaa, Theofanous & Elshafie, 2018) have been published, 
which were only used in minor cases for the validation of numerical models (Arjamadi & Yousefi, 2018). Most numerical 
models are exclusively 2D linear with even rarer nonlinear, and even rarer three-dimensional nonlinear finite element 
calculations (Shahriar & Hunar, 2019, Hawileh et al., 2010). 
 
With this in mind, there is a growing demand for the development and application of three-dimensional nonlinear finite 
element models. Monolithic RC structures, such as the high-level numerical examinations of the joints discussed in this 
paper, are far from being fully exploited. Thus, based on real laboratory experiments, a validated 3D nonlinear finite 
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element software can be used to investigate a number of structures, which have not yet been tested in laboratory 
conditions. 

 

Methodology 
Numerical study 
 
The finite element models were built with the ATENA 3D nonlinear finite element software. In numerical studies, we 
first analyzed, up to failure, the behavior of frame corner and beam-column connections under quasi-static on-way 
monotonic increasing loading. Then we modeled the behavior of each of the beam-column joints under horizontal cyclic 
loads. The accuracy of numerical results was compared to the results of laboratory experiments, thus showing the 
accuracy and precision of the modeling method we have developed. The constructed numerical models were prepared 
in the same way as the laboratory experiments found in the literature (Sin & Bing 2011; Morgan 2000; Masi, Santeriero 
& Nigro 2013). The geometric dimensions and reinforcement of the numerical models were defined also in the same 
way as the specimens tested in the laboratory. The basic data of the laboratory test that form the basis of numerical 
analyses and the actual formation of the connections are summarized in Table 1. Diagrams of the static frames of the 
test specimens (NS, LS, RV, NE RB, Z2 RB, Z4 RB) tested in the laboratory are shown in Figure 1. 
 

Table 1. Basic data of the specimens. Source: Sin & Bing (2011); Morgan (2000); Masi, Santeriero & Nigro (2013). 

 
 

Figure 1. Static frame of the specimens. (a) NS and LS specimens, (b) RV1/RV2 specimens, (c) RV9/RV10 specimens, (d) 
NE/Z2/Z4 RB specimens. Source: Self-Elaboration  
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Quasi-static analyses 
 
In the quasi-static numerical experiments, the material model of concrete was defined with an individually parametrized 
model on the basis of our previous results (Haris & Roszevák, 2017). The concrete material model includes the following 
effects of concrete behavior (Cervenka et al., 2014): non-linear behaviour in compression including hardening and 
softening, reduction of compressive strength after cracking (Van Mier, 1986), fracture of concrete in tension based on 
the nonlinear fracture mechanics (Hordijk, 1991), biaxial strength failure criterion (Kupfer et al.,1969), tension stiffening 
effect, reduction of the shear stiffness after cracking (Kolmar, 1986) and the fixed (Cervenka, 1985, Darwin & Pecknold, 
1974) and rotated (Vecchio & Collins, 1986, Crisfield & Wills, 1989) crack direction. The reinforcement material model 
is specified according to the properties of the reinforcement used in the laboratory experiments and the real stress-
deformation characteristics are provided. For the specimens “NS” and “LS”, a linear elastic-linear hardening material 
model was used because the results of the tensile test used in the laboratory test were not available. The strength 
properties of the concrete and reinforcement bars were defined according to the laboratory tests. The relationship 
between concrete and reinforcement bars was calculated and defined based on the CEB-FIP MODEL CODE 1990 (CEB, 
1993). The longitudinal bars were modeled with their real geometry and diameter, the stirrups with a closed rectangular 
shape other than the actual bending shape, but with their real diameter. The numerical models corresponding to the 
quasi-static load of the specimens’ (RV) frame and beam-column joints (NS and LS) were built up with several different 
reinforcements in the vicinity of the connection (see Figure 2). 
 

Figure 2. Numerical models. (a) NS03 specimen, (b) LS02 specimen, (c) RV1 specimen, (d) RV9 specimen. Source: Self-Elaboration. 

 
 
Cyclic analyses 
 
In our cyclic test, the material for concrete shown in Figure 3(a) was used. For tensile (fracture) and compressive (plastic) 
behavior, the software applied a smeared crack approach in respect of the concrete junction using a fracture plastic 
model. 
 

Figure 3. Material properties. (a) concrete material model, (b) cyclic reinforcement model, (c) bond-slip relationship. Source: Cervenka et al. (2014). 

 
(a) (b) (c) 
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The fracture model is based on the classical orthotropic smeared crack band and crack formulation model (Cervenka, 
1985, Darwin & Pecknold, 1974). Rotating and fixed crack models can be used in relation to exponential softening and 
Rankine tensile failure criterion. Plasticity for concrete in compression is inspected by the Menetery-Williams failure 
surface (Cervenka et al., 2014). The failure surface in compression is expressed in terms of three (independent) stress 
invariants such as hydrostatic stress, deviatoric stress and deviatoric polar angle. ATENA adds a so-called Unloading 
Factor to model concrete behavior under cyclic loading. The Unloading Factor controls crack closure stiffness. The factor 
mainly influences the shape of the hysteresis curve; in our analyses, the parameter was set to zero because this value 
provides the best fit to real behavior. The compressive strength of the concrete is defined in the same way as in the 
laboratory tests (fc

’ = 21,5 MPa). The reinforcement is defined by the cyclic properties based on the Menegotto-Pinto 
model (Menegotto & Pinto, 1973) (see Figure 3(b)). The yield strength and tensile strength of the reinforcement bars 
are also the same as in the laboratory experiments (fy = 480 MPa, fu = 540 MPa). In the longitudinal bars placed in the 
beam, the effect of slipping is taken into account. However, the perfect connection for the stirrups and the bars is set 
in the beam. In cases where the slip of the reinforcement bars is taken into account, the relationship between the 
concrete and the reinforcement bars is defined by a memory bond parametrized model. For the bond-slip relationship 
(see Figure 3(c)), the model is taken according to the CEB-FIP Model Code 1990 (τmax = 5.38 MPa, τf = 0.8 MPa, s1 = s2= 
0.6 mm, s3 = 2.5 mm). The placing of the bars is defined in the same way as in quasi-static tests. Figure 4(a) shows the 
direction of the positive and negative load as well as the measured force (F) and the measured displacement (e). In the 
laboratory test, the constant vertical force (Pf = 270 kN) at the top of the column was also defined for the finite element 
model (see Figure 4(a)). See Figure 4(b, c, d) for models with a horizontal cyclic load. 
 

Figure 4. Static frame and numerical models. (a) direction of the load, (b) NE RB specimen, (c) Z2 RB specimen, (d) Z4 RB specimen. 
Source: Self-Elaboration. 

 
 
Numerical properties 
For all nonlinear analyses, an iterative method (Newton-Raphson iteration method) was used to perform the iteration 
process. The Cholesky resolution was used to solve the state equation of the structure. In numerical models we used 
uniformly quadratic bar functions, and we used 20-node brick (In case of NE RB, Z2 RB and Z4 RB specimens) and 10-
node tetra (in case of RV specimens) elements for the concrete (Haris & Roszevák, 2017). The finite element mesh is 
distributed uniformly so that there are at least 4 finite elements within the given cross-sectional dimension (Haris & 
Roszevák, 2017). This means in our models the size of the finite element mesh surrounding the joint is not bigger than 
4-5 cm. The basic mesh size of the other part of the model was 10-15 cm. 
 
Load history 
The laboratory experiments performed (Masi, Santeriero & Nigro, 2013) were carried out in a displacement-controlled 
manner, which is characterized by the load history shown in Figure 5 below. In order to investigate finite element 
calculations for a suitable offset, the magnitude of relative drift ratio in international standards is reviewed, see Table 
2(a). 

Figure 5. Load history. Source: Masi, Santeriero & Nigro (2013). 
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Table 2. Drift ratios and numerical results. (a) Drift ratios in standards, (b) Numerical results. Source: Self-Elaboration. 

(a) Drift ratios  (b) Numerical results 

Name of the 
standards Country 

Drift ratio 
[%]  Specimens 

Force of failure 
[kN] 

Displacement 
[mm] 

Drift ratio 
[%] 

NRCC. 2005. Canada 2.5  NE RB 21.41 24.1 0.75 

NZS 1170.5:2004 
New 

Zealand 
1.5-2.0 

 
Z2 RB 40.12 33.55 1.05 

AS1170.4 2007 Australia 1.5  Z4 RB 39.73 32.59 1.02 

IBC-2009 USA 1.5      
 
In the laboratory tests, the maximum horizontal displacement value was about 160 mm, which corresponds to a 5% 
drift ratio, which is higher than the limits of the domestic and international standards (1.5 to 2.5%). The individual steps 
were defined in the numerical model in the same number and extent as in the laboratory tests. In the light of the above, 
finite element calculations were performed up to the third load level. Numerical testing was performed in the same way 
as the laboratory experiments (displacement-controlled). 
 
Prior to performing the cyclic tests, one-way monotonic increasing quasi-static tests were performed on the specimens 
tested in this article, which were performed as described in the quasi-static studies section. The purpose of the study 
was to determine the load bearing capacity and deformability of the specimens by numerical calculations, and we 
wished to compare the value of the maximum displacement under the load used (in terms of load history) in the analyses 
carried out in the laboratory experiments with the results of the numerical tests. The numerical results obtained with 
one-way (positive direction) monotonic increasing quasi-static load are shown in Figure 6. The characteristic values for 
the specimens are summarized in Table 2(b). 
 

Figure 6. Load vs. displacement diagrams. Source: Self-Elaboration. 

 
 
Within the scope of this article, studies were based on the load bearing capacities and displacements associated with 
the failure specified in the quasi-static experiment. Taking into account the drift ratio in international standards, finite 
element calculations were performed by setting a limit, which represents a drift ratio of 1%. 
 

Results and discussion 
 
Numerical results based on quasi-static analyses 
 
In this chapter we present in detail the results of numerical examinations. First, the results of the studies of the beam-
column joints are described. Calculations were also carried out with force and displacement control. The graph below 
shows the force and displacement diagrams of the “NS” specimens (Figure 7(a), (b)). In the figures it can be observed 
that the two models yield almost the same results on the initial, uncracked part. However, in the state of failure, the 
displacement-controlled model does not describe the so-called descending plastic deformation section. The results of 
the numerically derived models with different controls are summarized in the table below (Table 3(a)). 
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Figure 6. Load-displacement diagrams. Source: Self-Elaboration. 

  

  
 
In the initial phase, which corresponds to elastic stress state I (difference: 0.85 to 2.73%), and in the state near to failure, 
each variant shows a very good match (difference in force at failure: 1.98 to 5.49%, deviation from deflection: 1.79 to 
8.69%). There is no significant difference between the results of the numerical models with different reinforcements 
(the highest difference is + 5.49%, the smallest difference is -8.69%). The difference can be seen in the decay after 
failure, which becomes important later in the cyclic friction modeling of cyclic loading. 
 
The results of the experiments on “LS” specimens are shown in Figure 7(c). In this case, force-controlled experiments 
were performed. The results of the numerical studies are summarized in Table 3(b). On the graph it can be observed 
that the results of the models with different stirrup distances show a relatively large variation in the load-bearing 
capacity (deviation: 15 to 26%), even though in the models the “classic” curved iron quantity is the same. In the case of 
specimen “LS01”, the descending plastic deformation phase is not observed, but there is some plasticity already in 
specimens “LS02” and “LS03”. The deformability of the test specimens “LS02” and “LS03” is greater (difference: 17 to 
26%), so they behave more ductically. The failure of specimen “LS01” can be considered a “brittle” failure. In all cases, 
the drawn reinforcement ratio of the test specimens is the same as that of the placing, together with the density of the 
stirrups, which increases the load-bearing capacity (load-bearing capacity increase: 15 to 26%). 
 
A so-called closing frame was investigated for specimens “RV1” and “RV2”, and the opening frame corner for specimens 
“RV9” and “RV10”. The resulting force-displacement diagrams are shown in Figure 6(d). For specimens “RV1” and “RV2”, 
the reinforcement ratio is the same, but the reinforcement placing is different. In the two models (RV1, RV2), the 
magnitude of the cracking force is nearly the same (cracking force: “RV1”: 39.16 kN, “RV2”: 37.40 kN). The force at the 
failure for specimen “RV1’ is approximately 165.54 kN and 122.40 kN for specimen “RV2”. When testing the opening 
frame corners, the curved reinforcement ratio used for test pieces “RV9” and “RV10” is the same, but the placing of the 
curved bars is different. A change in the “efficiency” of the used reinforcement bars can be demonstrated in this case. 
The force-displacement diagrams are the same in nature; however, due to the biased reinforcement, specimen “RV9” 
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is able to absorb more force (force at failure: “RV9”: 1202.00 kN, “RV10”: 85.00 kN). The results of each of the numerical 
analyses are summarized in Table 3(c). 
 

Table 3. Numerical results. Source: Self -Elaboration, Sin & Bing (2011), Morgan (2000). 

(a) Numerical results (NS specimens) 

Specimen 

Cracking force [kN] 

Differenc
e [%] 

Force of failure [kN] 

Differenc
e [%] 

Displacement [mm] 

Differe
nce [%] 

Displacement- 
controlled 

Force-
controlled 

Displacement- 
controlled 

Force-
controlled 

Displacement- 
controlled 

Force-
controlled 

NS01 49.35 48.00 -2.73 183.81 193.00 +4.99 36.58 33.40 -8.69 

NS02 53.45 54.00 +0.85 183.81 194.50 +5.49 36.58 33.50 -8.42 

NS03 58.63 57.50 -1.93 191.18 195.00 +1.98 36.14 36.80 +1.79 

 

(b) Numerical results (LS specimens) 

Specimen 
Cracking force 

[kN] 
Force of failure 

[kN] 
Displacement 

[mm] 

LS01 57.87 276.50 55.20 
LS02 57.86 326.10 67.14 
LS03 66.53 375.01 73.85 

    
(c) Numerical results (RV specimens) 

Specimen 
Cracking force 

[kN] 
Force of failure 

[kN] 
Displacement 

[mm] 

RV1 39.16 165.54 34.52 

RV2 37.40 120.70 22.81 
RV9 27.20 102.00 23.59 

RV10 25.50 85.00 20.51 

 
Numerical results based on cyclic analyses 
 
The results of the numerical experiments are described in detail below. The finite element calculation was feasible up 
to our limit. The modeling technique we used was not suitable for the examination of the deformations above the 
specified limit, and the calculations cannot be run at post-restriction load levels. The results obtained in the numerical 
experiment were proportionally determined on the basis of the laboratory experiments (Masi, Santeriero & Nigro, 2013) 
for later comparability. The value of the resulting displacement was divided by the total height of the specimens (H = 
3.20 m) to yield the drift ratio. The force-drift diagram of the numerical tests on specimen “NE RB” is shown in Figure 
7(a). On the force rotation diagram, it can be observed that the drift values converted from the displacement are 
identical at the end of each cycle. At the end of the cycles of the first load level in the positive direction, the drift ratio 
is the same (drift ratio: 0.33%), but the value of the force shows a decreasing tendency (10.14 kN; 10.10 kN; 9.92 kN; 
9.78 kN). The numerical analysis stopped after the 9th cycle: at the end of the cycle the specimen was destroyed (force 
at failure: 16.86 kN). The same drift values had different force values at the end of the subsequent cycles. The results 
were summarized in a tabular form, see Table 4. 
 

Figure 7. Force-drift diagrams. Source: Self-Elaboration. 
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Table 4. Numerical results. Source: Self-Elaboration; Masi, Santeriero & Nigro (2013). 

Number of 
cycles [-] 

"NE RB" specimen "Z4 RB" specimen "Z2 RB" specimen 

Drift [%] 

Force 
value at 

the end of 
the cycle 

[kN] 

Difference 
of force 

[%] Drift [%] 

Force 
value at 

the end of 
the cycle 

[kN] 

Difference 
of force 

[%] Drift [%] 

Force 
value at 

the end of 
the cycle 

[kN] 

Difference 
of force 

[%] 

1 +0.33 10.14 - +0.33 22.31 - +0.33 22.93 - 

2 10.1 -0.39 22.23 -0.35 22.28 -2.83 

3 9.92 -2.69 21.84 -2.11 22.02 -3.96 

4 9.78 -3.55 21.59 -3.22 18.40 -19.75 

1 -0.33 -11.75 - -0.33 -25.85 - -0.33 -25.87 - 

2 -11.55 -1.70 -25.42 -1.62 -24.15 -6.65 

3 -11.11 -5.44 -24.45 -5.41 -24.08 -6.92 

5 +0.63 15.41 - +0.63 33.90 - +0.63 33.22 - 

6 14.54 -5.64 31.97 -5.69 32.02 -3.61 

7 13.40 -13.04 29.49 -13.00 31.80 -4.27 

8 12.81 -16.87 28.18 -16.85 31.18 -6.14 

4 -0.63 -16.49 - -0.63 -36.28 - -0.63 -36.51 - 

5 -15.48 -6.12 -34.00 -6.28 -36.11 -1.09 

6 -15.07 -8.61 -33.16 -8.60 -34.64 -5.12 

7 -14.82 -10.13 -32.61 -10.12 -34.09 -6.63 

9 +0.81 16.86 - +0.90 37.11 - +0.93 39.60 - 

8 -0.81 -18.80 - -0.90 -41.36 - -0.93 -40.76 - 

 
There is a similar phenomenon in test specimen “Z4 RB” as in specimen “NE RB”. The length of the longitudinal 
reinforcement bars placed in the column and the beam of the specimen are larger than in the case of the “NE RB” 
specimen, and the spacing of the stirrups is denser. For specimen “Z4 RB” at the final cycle (cycle 9), the force at the 
failure is 37.11 kN (see Figure 7(b)). In this case as well, the force exerted by the test specimen shows a similar tendency 
as in specimen “NE RB”. The decrease in force value for the same drift value at the first load level after the first cycle is 
-0.35% and after the fourth cycle is -3.22%. The results obtained in numerical analyses are summarized in Table 4. 
 
Numerical calculations were also performed for specimen “Z2 RB”. The resulting force-drift diagram is shown in Figure 
7(c). At the end of the test, the force at the end of each cycle is similar to the previous one. At the second load level, the 
deviation (negative load direction) of forces (-3.61%, -4.27% and -6.14%) corresponds to the same drift values. In this 
case, the numerical experiment was stopped after the 9th cycle. The test was carried out in the direction of the positive 
load up to 39.60 kN. The results were also summarized in a tabular form, see Table 4. 
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Comparison of numerical and experimental results 
 
In this chapter we summarize and compare the numerical and laboratory experiment results obtained in the literature 
(Sin & Bing, 2011, Morgan, 2000, Masi, Santeriero & Nigro, 2013). First, the results of the experiments on specimens 
“NS” were compared (see Figure 8(a, b). The results of numerical examinations and laboratory experiments (Sin & Bing, 
2011, Morgan, 2000) are summarized in Table 5. Until failure, there is a good match between the laboratory and 
numerical experiment results; even after failure, the plastic deformation phase can be achieved with the applied model 
settings. 
 
In the following, the results of the laboratory and numerical tests performed on specimens “LS” are also illustrated in 
force-displacement diagrams (see Figure 8(c)). The results obtained are summarized in a tabular form, see Table 5. In 
the case of test specimens “LS”, the numerical results, in good correspondence with the results of the laboratory 
experiments, were almost the same until initial stress state I was reached. There is a difference of – 7.89% for “LS01”, -
8.22% for “LS02” and -8.08% for “LS03” in the cracking force. Following the cracking, the stiffness of the individual 
numerical models and the direction of the force-displacement diagram follow the laboratory experiments properly. This 
is also shown by the fact that the forces associated with the failure (in case of lab test “LS01”: 276.30 kN, from the 
numerical test: 276.50 kN) are very good. In both laboratory and numerical experiments, it can be observed that due to 
the same tensile reinforcement ratio and the use of different reinforcement placing, the load-bearing capacity of the 
specimens is different. The force of failure for specimen “LS01” is 276.30 kN (lab test) and 276.50 kN (numerical 
experiment), for specimen “LS03” it is 371.70 kN (lab test) and 375.10 kN (numerical experiment). We present the results 
of numerical and experimental laboratory tests carried out on opening and closing frame corners. The force-
displacement diagrams obtained from the experiments are shown in Figure 8(d), and the results are summarized in 
Table 5. 
 
The numerical results of specimens “RV1” and “RV2” show a very good match in this case until the cross-sectional 
cracking occurs, and the laboratory results are well approximated by the numerical model. The value of the cracking 
force for specimen “RV1” is 40.00 kN (lab test) and 39.10 kN (numerical experiment). In this case, involving two 
specimens with different reinforcement placing, but with the same tensile reinforcement ratio, there is a significant 
difference between the load-bearing capacity in the numerical experiments (“RV1”: 165.54 kN; “RV2”: 122.40 kN), and 
also in the laboratory tests (“RV1”: 165.00 kN; “RV2”: 121.00 kN). 
 
The test of the opening frame (“RV9” and “RV10”) also shows a good match between the results of laboratory and 
numerical experiments. The force at cracking in the finite element model is almost the same as in the laboratory 
experiment (deviation: “RV9”: 5.88%; “RV10”: 1.65%). In this case, the failure occurs in the same way as in the laboratory 
experiment in the case of specimen “RV10” at lower force level (laboratory test: 87.00 kN, numerical experiment: 90.10 
kN). In the case of test specimen “RV9”, the tensile reinforcement ratio is the same as for test specimen “RV10”, but 
the placing of the bars is different. For specimen “RV9”, with the same reinforcement ratio (as “RV10”), the force at 
failure in the laboratory test is 109.00 kN, and 108.80 kN the numerical test. 

 
Figure 8. Comparison of numerical and experimental results. Source: Self-Elaboration; Sin & Bing (2011); Morgan (2000). 
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In the following, we summarize and compare the laboratory results (Masi, Santeriero & Nigro, 2013) found in the 
literature and the numerical experiment results obtained with cyclic load models. The detailed results of the laboratory 
experiments were not available; only the force-drift diagrams were presented in the publication, so they are illustrated 
in separate diagrams transferred from the original publication. The following diagrams compare the results of the 
experiments performed on specimens “NE RB” (See Figure 9 (a, b)). The values of the envelope of the force-drift 
diagrams obtained in the laboratory experiments are compared with the results of the numerical experiments 
performed by us. 
 
In the case of specimen “NE RB”, the displacement in the first cycle has already cracked the concrete cross-section, so 
the extreme value of the first cycle already occurs in stress state II. The extreme values of the first load level of the 
numerical test are almost the same as those of the laboratory experiments (deviation in positive load: -0.19%; negative 
load: +0.59%). The results obtained at the second and third load level also show a good match, with 4.99% in the positive 
direction and -2.14% in the negative direction. We could not continue the numerical experiments after the third load 
level: the structure was ruined. The force associated with the failure (16.86 kN) of the finite element model and the 
force determined in the laboratory test (18.24 kN) are nearly the same. 
 
 
The numerical and experimental results for specimen “Z4 RB” are shown in Figure 9(c, d). At the first load level, the 
displacement rate in this case was also such that the critical cross-section of the structure was cracked. The force 
measured by the numerical test was 22.31 kN and 24.38 kN in the laboratory experiment. At the second load level, there 
is a good match between numerical and laboratory tests in the direction of negative and positive load direction 
(difference: +1.24%, +9.17%). After the third load level, the numerical test stopped in this case, but there is no big 
difference between the force obtained in the numerical test (37.11 kN; -41.36 kN) and the force measured in the 
laboratory experiment (41.06 kN; -39.87 kN). 
 
Similarly to the above, the force-drift diagrams determined in the numerical and laboratory experiments in specimens 
“Z2 RB” are shown in Figure 9(e, f). The same behavior as that of specimens “NE RB” and +Z4 RB” is observed. In this 
case, there is also a good match between numerical and laboratory experiment results at this first load level (difference: 
-3.28%; +8.08%). The results of the second and third load level also show a good match (+9.5%; -10.24%; -2.51%; -
3.75%). At the third load level, the finite element calculation was not continued in this case, and the calculation stopped 
at a load of 39.60 kN during the test. The results of the numerical and laboratory experiments performed are 
summarized in Table 6. 
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Table 5. Comparison of numerical and experimental results. Source: Self-Elaboration; Sin & Bing (2011); Morgan (2000). 

Specimen Type of the experiments 
Cracking 
force [kN] 

Force at failure 
[kN] 

Displacement at failure 
[mm] 

NS01 Laboratory 48.50 184.00 39.80 

Numerical (force-controlled) 48.00 193.00 35.40 

Numerical (displacement-controlled) 49.35 193.81 36.58 

Difference [%] (force-controlled) -1.03 +4.66 -11.05 

Difference [%] (displacement-controlled) +1.72 +5.06 -8.09 

NS02 Laboratory 53.70 188.00 33.10 

Numerical (force-controlled) 54.00 194.50 36.40 

Numerical (displacement-controlled) 53.45 183.81 36.58 

Difference [%] (force-controlled) +0.55 3.34 +9.06 

Difference [%] (displacement-controlled) -0.46 -2.23 +9.51 

NS03 Laboratory 57.80 191.10 33.00 

Numerical (force-controlled) 57.50 195.00 36.80 

Numerical (displacement-controlled) 58.63 191.18 36.14 

Difference [%] (force-controlled) -0.51 +2.00 +10.33 

Difference [%] (displacement-controlled) +1.41 +0.04 +8.68 

LS01 Laboratory 57.39 276.30 69.00 

Numerical (force-controlled) 53.30 276.50 55.20 

Difference [%] (force-controlled) -7.89 +0.07 -20.00 

LS02 Laboratory 57.86 298.60 78.20 

Numerical (force-controlled) 53.10 326.10 67.14 

Difference [%] (force-controlled) -8.22 +8.43 -14.14 

LS03 Laboratory 66.53 371.70 86.50 

Numerical (force-controlled) 53.80 375.10 73.85 

Difference [%] (force-controlled) -19.31 +0.91 -14.60 

RV1 Laboratory 40.00 165.00 31.00 

Numerical (force-controlled) 39.10 165.54 34.52 

Difference [%] (force-controlled) -2.25 +0.33 +10.19 

RV2 Laboratory 38.00 121.00 22.00 

Numerical (force-controlled) 35.70 122.40 39.78 

Difference [%] (force-controlled) -6.05 +1.14 +44.69 

RV9 Laboratory 27.20 109.00 34.70 

Numerical (force-controlled) 28.90 108.80 32.74 

Difference [%] (force-controlled) +5.88 -0.18 -5.65 

RV10 Laboratory 24.20 87.00 28.30 

Numerical (force-controlled) 23.80 90.10 27.13 

Difference [%] (force-controlled) -1.65 +3.44 -4.13 

 
 

Figure 9. Comparison of numerical and experimental results. Source: Self-Elaboration; Masi, Santeriero & Nigro (2013). 

   

(a) Force-drift diagram – laboratory experiments 
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Table 6. Comparison of numerical and experimental results. Source: Self-Elaboration; Masi, Santeriero & Nigro (2013). 

Specimen 

Direction 
of the 
load 

Force at the 1st load 
level [kN] 

Difference 
[%] 

Force at the 2nd load 
level [kN] 

Difference 
[%] 

Force at the 3rd load 
level [kN] 

Difference 
[%] Laboratory Numerical Laboratory Numerical Laboratory Numerical 

NE RB 
Positive 10.16 10.14 -0.19 16.22 15.41 -4.99 18.24 16.86 -7.56 

Negative 11.68 -11.75 +0.59 -16.85 -16.49 -2.14 -17.84 -18.80 +5.11 

Z4 RB 
Positive 24.38 22.31 -8.49 33.48 33.90 +1.24 41.06 37.11 -9.62 

Negative -23.38 -25.85 +9.55 -32.95 -36.28 +9.17 -39.87 -41.36 +3.6 

Z2 RB 
Positive 23.71 22.93 -3.28 30.05 33.22 +9.54 40.62 39.60 -2.51 

Negative -23.78 -25.87 +8.08 -32.77 -36.51 -10.24 -42.35 -40.76 -3.75 

 
 

Conclusions 
 
Within the framework of this article, numerical studies of beam-column and frame corner joints were performed under 
monotonic increasing quasi-static and cyclic load using a 3D modeling method developed by us. The numerical models 
were constructed with the actual concrete cross-sections and reinforcements used in the laboratory experiments (Sin 
& Bing, 2011, Morgan, 2000, Masi, Santeriero & Nigro, 2013) found in the literature to be directly compared with them. 
Numerical tests were performed with the ATENA 3D nonlinear finite element program. The results of the numerical 
studies were presented and compared with the results of the laboratory experiments referred to. Based on the 
numerical tests we carried out using the modeling method we developed, we make the following statements: 
 

 When testing the beam-column connections, denser stirrup distance for test specimens “NS” does not result in a 
significant difference in load-bearing capacity. However, the results are very well matched (deviation of the force 
at failure: 0.04 to 8.43%) regarding the numerical tests. In order to properly evaluate the behavior of the 
relationship, we also recorded the deflection values associated with the failure, which also show a good match 
compared to experiments performed in the laboratory (difference: 8.09 to 20.00%). 

 In the case of beam-column specimens “NS” and “LS”, between the initial cracking (stress state I) and failure (stress 
states II and III) a very good match can be found (deviation: force at failure: 4 to 8%). In case of specimens “NS” 
there is no significant difference in the section up to failure. 

(c) Force-drift diagram – 
laboratory experiments 

(e) Force-drift diagram – 
laboratory experiments 
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 Within displacement-controlled numerical experiments, the assumed plastic deformation phase after failure is not 
modeled by the modeling technique we used. In force-controlled numerical analyses, on the other hand, it is 
possible to show the plastic or so-called descending behavioral phase following the failure. 

 Large plastic deformations were observed in test specimens “LS02” and “LS03”, but after failure, numerical 
calculations were continued. Until failure, the results show a good match (difference: force at failure: +0.07%, 
+8.43%, +0.91%). 

 In the case of specimens “RV”, a good match can be found between the results obtained by numerical tests and 
the results of the laboratory experiments (deviation of the force at failure: 0.33 to 1.14%). 

 It can be stated that numerical models set up with the actual (real) reinforcement characteristics have better 
results (deviation of displacement: 4 to 11%) than models where linear elastic – linear hardening reinforcement 
material models were used (deviation of displacement: 4 to 20%). The plastic deformations after failure can be 
modeled using the real reinforcement characteristics. 

 Specimen “NE RB” has a significantly lower load-bearing capacity (almost half) compared to specimens “Z2 RB” 
and “Z4 RB” with a higher tensile reinforcement and denser stirrup distance. 

 It can be observed in the individual numerical studies that the force of the same displacement values shows a 
decreasing tendency; the friction and degradation of the concrete can be examined by the modeling method we 
used. At the extreme values of each cycle, the measured force is reduced to between 1 and 16% in the first cycle 
(same load level). 

 Within the limit of the horizontal displacement determined by us, the numerical results are very close (difference: 
2 to 10%) to the results of the laboratory experiments. 

 In addition to the displacement limit set by us, the finite element calculation cannot be performed using the 
modeling technique applied. The value given as a barrier is still close to the small displacements; besides, we have 
to apply a modeling procedure that takes large deformations into account. 

 The drift ratio of 1 to 2.5% above the limit of drift defined by us can be tested with the new, improved modeling 
technique which we are currently developing. 

 
All in all, with the modeling technique we have defined, the real behavior of cast-in-situ RC beam-column and frame 
corner joints can be approached numerically under both one-way monotonic increasing and cyclic load. The joints and 
their different reinforcement designs can be modeled with the modeling method developed by us using three-
dimensional nonlinear finite element software to accurately describe the behavior. The numerical results obtained are 
technically acceptable for laboratory experiments (Sin & Bing, 2011, Morgan, 2000, Masi, Santeriero & Nigro, 2013) 
performed in international research programs. With this modeling technique, it is possible to examine the effect of the 
actual reinforcement design that has a fundamental impact on the complex behavior of structural joints or details. The 
“efficiency” of the reinforcement applied and the amount of the bars can be quantified and optimized if necessary. We 
have shown that it is possible to analyze the complex behavior of monolithic RC frame corners with identical 
reinforcements under one-way monotonic increasing quasi-static loading, instead of a series of very expensive 
laboratory experiments. In finite element calculations, we applied horizontal cyclic loads and also vertical quasi-static 
loads, with which we were able to accurately analyze the complex behavior of the tested specimen’s joints from a 
technical point of view. Based on the results obtained, it is possible to examine structures and reinforcement designs 
not tested in laboratory conditions. With the modeling technique developed, it is also possible to investigate the 
behavior of new or not even existing RC joints against seismic and cyclic horizontal loads. In addition to the limitations 
of the drift ratio within the scope of this article, we plan to investigate a new modeling technique that is currently under 
development. 
 
Modeling techniques can also explore further research opportunities and directions, such as: 

 Investigating cast-in-situ RC wall-slab connections for horizontal cyclic load, 

 Developing a method for modeling large deformations of RC details, 

 Testing the possibilities of the modeling of overlapped reinforcement, 

 Examining different modeling options for stirrups, 

 Modeling the connections of concrete elements at different construction stages. 
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