
319 
 

Application of the Monte Carlo method to estimate the uncertainty in the 
compressive strength test of high-strength concrete modelled with a 
multilayer perceptron  

 
Estimación de la incertidumbre de un perceptrón multicapa para la modelización del ensayo de 
resistencia a compresión del concreto de alta resistencia mediante la aplicación del método de 
Monte Carlo 
 
Isabel Moromi Nakata (Main and corresponding author) 

Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería 
Av. Túpac Amaru 210, Lima 25 (Peru) 
imoromi@uni.edu.pe 

 
Francisco García Fernández 
Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural 
Universidad Politécnica de Madrid  
Ciudad Universitaria s/n, 28040 Madrid (Spain) 
francisco.garcia@upm.es 

 
Ana Torre Carrillo 
Facultad de Ingeniería Civil, Universidad Nacional de Ingeniería 
Av. Túpac Amaru 210, Lima 25 (Peru) 
anatorre@uni.edu.pe 
 

Pedro Espinoza Haro 
Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería 
Av. Túpac Amaru 210, Lima 25 (Peru) 
pcesp67@gmail.com 
 

Luis Acuña Pinaud 
Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería 
Av. Túpac Amaru 210, Lima 25 (Peru) 
lacuna@uni.edu.pe 

 
Manuscript Code: 1067 
Date of Acceptance/Reception: 25.07.2018/24.01.2018 
DOI: 10.7764/RDLC.17.2.319 

 
Abstract 
The use of artificial neural networks as a modeling tool for the physic-mechanical properties of diverse materials has experienced great advances in 
the last ten years, mainly due to the increased in computing capacities of computers. This technique has been used in many different fields of science 
and its effectiveness is sufficiently proven. Its application in the particle board industry complies with the requirements of the test regulations for the 
use in production control, as an alternative method to normalized one. However, in spite of providing a result with a great approximation, they do 
not indicate anything about the uncertainty of the result. This last point is crucial when the results have to be compared with a product standard. 
There are internationally accepted deterministic techniques for obtaining the uncertainty of a test result, always starting from the knowledge of the 
function that relates the measure with the measurement parameters. However, these techniques are not entirely adequate for the case of excessively 
complex functions such as an artificial neural network. In these cases, the use of stochastic simulation methods such as the Monte Carlo method is 
more appropriate. In this article, an artificial neural network will be developed to obtain the compressive strength of high-strength concrete to later 
obtain the uncertainty by a Monte Carlo simulation. 
 
Key words: Artificial neural network, compressive strength, high-strength concrete, uncertainty, Monte Carlo, GUM. 

 
Resumen 
La utilización de las redes neuronales artificiales como herramienta de modelización de las propiedades físico-mecánicas de muy diversos materiales 
ha experimentado un gran avance en los últimos diez años debido principalmente al incremento de las capacidades de cálculo de los ordenadores. 
Esta técnica ha sido empleada en muy diversos ámbitos de la ciencia y su efectividad está suficientemente acreditada. Su aplicación en la industria de 
tableros de partículas cumple con los requisitos de las normativas de ensayo para la utilización en el control de producción de métodos alternativos 
al normalizado. Sin embargo, pese a proporcionar un resultado con una gran aproximación, no indican nada sobre la incertidumbre de dicho resultado. 
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Y este último punto es crucial cuando se compara el resultado con la especificación del producto. Existen técnicas deterministas, aceptadas 
internacionalmente, para la obtención de la incertidumbre de un ensayo, siempre partiendo del conocimiento de la función que relaciona el 
mensurando con los parámetros de medida. Sin embargo estas técnicas no son del todo adecuadas para el caso de funciones excesivamente complejas 
como es el caso de una red neuronal artificial. En estos casos es más adecuado la utilización de métodos estocásticos de simulación como el método 
de Montecarlo. En este artículo se va a desarrollar una red neuronal artificial para la obtención de la resistencia a compresión del concreto para 
posteriormente obtener la incertidumbre mediante una simulación de Montecarlo.  
 
Palabras clave: Red neuronal artificial, resistencia a compresión, concreto de alta resistencia, incertidumbre, Montecarlo, GUM. 
 

Introduction 
 
In recent years, the development of increasingly powerful computers has contributed to an increase in the use of 
modeling techniques using artificial neural networks in different areas of research. Various applications from home 
prices valuation (Nuñez Tabares, Rey Carmona & Caridad y Ocerín, 2013) to engineering (Çanakci, 2007) have benefited 
from these powerful modeling tools.  
 
These tools provide a substantial improvement over any previously proposed model, regardless of its nature, with the 
added advantage that they do not need any prior assumption about the statistical structure of data (Khosravi, 
Nahavandi, Creigton & Atiya, 2011a). 
 
Major advances have been made in industrial process control, mainly because they are capable of modeling complex 
relations and can adequately predict whether or not the product characteristics are in line with specifications 
(Sukthomya & Tannock, 2005). They have been widely used to characterize different materials such as cement 
(Baykasoğ, Delhi & Tanış, 2004), concrete (Bilim, Atiş, Tanyildizi & Karahan, 2009; Sandemir, 2009; Özcan, Atiş, Karahan, 
Uncuoğlu & Tanyildizi, 2009) and certain metals (Mukherjee, Schmauder & Rühle, 1995; Malinov, Sha & McKeown, 2001; 
Hassan, Alrashdan, Hayajneh & Mayyas, 2009; Ozerdem & Kolukisa, 2009). 
 
Nevertheless, a neural network itself does not provide any information on confidence intervals or results uncertainty 
(Khosravi et al., 2011a). This uncertainty is important not only as indicative of measurement process quality, but also 
provides a confidence interval on results (Solaguren-Beascoa Fernández, Alegre Calderón & Bravo Díez, 2009). 
 
According to the international accepted definition, the uncertainty associated with a measurement can be defined as 
the square root of the variance of its probability density function. In this context, the Guide to the Expression of 
Uncertainty in Measurement (GUM) (BIMP, IEC, IFCC, ISO, IUPAC & OILM, 1995) indicates a method to obtain the 
uncertainty on a measurement from the input parameters values and their probability distributions. In most cases, the 
measurand is derived from a direct measurement, it is not difficult to assess its uncertainty. However, sometimes the 
measurand is defined as a function of the input values. In these cases, the uncertainty on the measurand can be obtained 
by the law of propagation of the variances (BIMP et. al, 1995).The use of this methodology implies a knowledge of the 
function relating the input parameters with the measurand. This is difficult when the model is derived through the 
numerical solution, for example, in case of models defined by differential equations (Esward, Ginestous, Harris & Hill, 
2007) or when the model is excessively complex and nonlinear, i.e. in the case of an artificial neural network. In these 
cases, as well in the case of dominant contribution from a non-normal distribution function or when the distribution 
function of the measurand is asymmetric, an evaluation of the output uncertainty based on the law of propagation of 
uncertainty will provide values not entirely reliable (Esward et al., 2007). 
 
To solve these problems, the Working Group 1 of the Joint Commitee for Guides in Metrology (JCGM) prepared a 
supplement to the GUM describing how to obtain the uncertainty on the measured through simulation by the Monte 
Carlo method (JGCM, 2008). This methodology is generally valid for a larger group of situations than the GUM (Müller 
et al., 2008). 
 
This article develops a new methodology, based on the simulation by the Monte Carlo method as described in 
Supplement 1 of the GUM (JGCM, 2008), to evaluate the output uncertainty of a multilayer perceptron used to model 
the testing for compressive strength of high-strength concrete according to ASTM C 39 / C 39M (ASTM, 2001) with 
different curing times. 
 
The multilayer perceptron is a type of network widely used to study the mechanical properties of different construction 
materials, not only cement (Sarıdemir, 2009; Özcan et al., 2009), but also basalt (Çanakci, 2007), various metals 
(Ozerdem & Kolukisa, 2009; Reddy, Krishnaiah, Hong & Lee, 2009) or wood-based panels (Cook & Chiu, 1997). In all 
cases, results indicate very good correlations between actual values and those simulated by the neural network. 
However, none of these studies provide any information on the uncertainty on the network output values. 
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Materials and Methods 
High-strength concrete 
 
This study used 1054 specimens of high-strength concrete made with different types and amounts of cement, sand, 
coarse aggregate and water. The specimens for compression testing were made according to ASTM standard C 192 / C 
192M (ASTM, 2000). Compression tests were carried out according to ASTM standard C39 / C 39M (ASTM, 2001) after 
different curing times. 
 
Axial compression tests were carried out on a Toni Technik machine with a 3000KN cell and a Tinius Olsen machine with 
a 1500KN cell (A). Following the results of similar studies (Torre, García, Moromi, Espinoza & Acuña, 2015; Acuña, Torre, 
Moromi & García, 2014), the explanatory variables chosen to model the compressive strength of concrete were: curing 
time; type, amount and percentage of additive; type, amount and percentage of microsilica; amounts of water, coarse 
aggregate, sand and cement; the nominal maximum coarse aggregate size; specific weights of sand and coarse 
aggregate; and the water-cement ratio. 
 
The Table 1 shows the instruments used for testing, as well as their range of measurement and uncertainty. 
 

Table 1. Instruments used for variables measurements. Source: own elaboration.  

Instrument Uncertainty 

Sieve3/4" 0.05 mm 

Sieve1” 0.04 mm 

Scale 0-100 kg 0.02 kg 

Scale 0-21000 g 2.5 g 

Vernier0-300 mm 5·10-3 mm 

 
Multilayer perceptron 
 
The multilayer perceptron (Figure 1) could be defined as a computing system that imitates the computational 
capabilities of biological systems by using a large number of interconnected elements. Its characteristics as a universal 
approach function (Hornik, 1989) allows the modeling of complex nonlinear relationships. 

 
Figure 1. Feed-forward multilayer perceptron neural network. Source: own elaboration.  

 
 
 
To design a multilayer perceptron is a slow and complex process. There are no fixed rules to establish the internal 
structure of the network. However, there are a number of recommendations available regarding its design, based on 
the quantity of available data (Sha, 2007), or on the most desirable type of configuration (Vanstone & Finnie, 2009). 
There are as well a number of conditions that must be met to ensure that the network will perform properly, especially 
concerning the avoidance of overfitting (Bishop, 1995). 
 
To avoid overfitting and to evaluate the reliability of the network, the initial dataset was randomly divided into three 
subsets: the training, validation and testing subsets. The first two were used for the training phase and for the 
prevention of overfitting, respectively. The third subset was used to assess the level of reliability of the network (Bishop, 
1995). 
 
The sigmoid hyperbolic tangent (Eq. 1) was used as a transfer function; it is mathematically equivalent to the hyperbolic 
tangent, but improves the network performance (Demuth, Beale & Hagan, 2002). 
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where: 
f(x): neuron output value. 
x:  neuron input value. 
The values of all variables, both dependent and independent, were normalized to avoid large values of x, for which the 
derivative of f(x) is close to zero. This permits a higher effectiveness of the transfer function (Eq. 2) (Demuth, Beale & 
Hagan, 2002). 
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where: 
X’:value after normalization of vector X. 
Xmin y Xmax: maximum and minimum values of vector X. 
 
The training algorithm used was the resilient backpropagation, which greatly improves the results with sigmoidal 
transfer functions (Demuth, Beale & Hagan, 2002). 
 
Modeling with artificial neural networks can provide output values which closely approximate to the experimental 
values obtained in laboratory, but it cannot provide an estimation of the uncertainty associated with the output value. 
This uncertainty is the result, on one hand, of the simplification of the phenomenon by modeling mathematically; and 
on the other hand, of the variability and noise which are inherent in the input values (Mazloumi, Rose, Currie & 
Moridpour, 2011). 
 
Various studies have been undertaken to obtain confidence intervals, but always in particular cases, such as perceptrons 
with only one hidden layer, with normal distributions of the input variables, or with the assumption of normality of the 
output errors (Khosravi et, al, 2011a; Papadopoulos, Edwards & Murray, 2001; Chryssolouris, 1996). These particular 
cases do not cover the whole field of development of neural networks since they do not consider cases for which the 
perceptron has more hidden layers (Figure 1) or another type of network. 
 

Calculation of test uncertainty 
 
The GUM (BIMP et al., 1995) includes a series of international recognized recommendations to evaluate the uncertainty 
on measurement results. It introduces in particular the law of propagation of uncertainty to obtain the uncertainty on 
a measurement from the uncertainties of variables involved in the process: 
 
If y = f (x1, x2,......xn) is the function that determines the final value of the measurement result and xi (i = 1,....,p) are all 
variables that influence the measurement result, the law of propagation of uncertainty specifies that the combined 
uncertainty (u2

y) of the final value of the result is defined by (Eq. 3): 
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where: 
u2

y: combined test uncertainty 
xi: variables influencing the measurement 
uxi: measurement uncertainty of variable xi. 
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y=f(x): function relating the measurements with the measurand 
γ(xi, xj): correlation coefficients between variables. 
 
Correlation coefficients between the different variables involved in the process, γ(xi, xj), represent the possible influence 
that may have one measurement with one instrument, over another measurement performed later with the same 
instrument or a different one. 
 

The adaptive Monte Carlo method 
 
The GUM (BIMP et al., 1995) attempts to cover a variety of different situations that can occur during the measurement 
process. However, in many cases, such as the non-normality of a key input variable, or the complexity of the function 
relating input and output variables, or the lack of normality of the output errors, using the law of propagation of 
uncertainty can provide unreliable results (Esward et al., 2007). 
 
The Supplement 1 to the GUM (JGCM, 2008) describes a numerical method based on Monte Carlo simulation to 
calculate this uncertainty. The number of simulations will depend on the degree of confidence desired for the results. 
As general rule, 106 simulations are usually required to obtain 95% confidence intervals (JGCM, 2008). 
 
However several factors, such as the nature and type of distribution of the input data, the model function, or the nature 
itself of output values Y, can influence the required number of simulations. 
 
The adaptive Monte Carlo method described in section 7.9 of Supplement 1 (JGCM, 2008) solves this problem by 
determining the number of simulations through an iterative method based on the desired level of precision for the 
uncertainty and the required confidence interval: 
 
Let δ be the acceptance factor, function of the required accuracy (Eq. 4): 
 

2

10
n

  (4) 

 
where: 
n: required number of significant digits. 
δ: numerical tolerance factor. 
 
Let M be the number of data for each simulation, function of the required coverage factor (Eq. 5): 
 

),10(
4

JMaxM   (5) 

 
where: 
J: rounding down of 100/(1-q). 
q: coverage probability required. 
M: number of Monte Carlo trials. 
 
1. Let the parameter h = 1 be the number of times to repeat the process till the numerical tolerance factor is reached. 
2. Randomly the set X (x1, x2…. xm) of M data is generated, to obtain a matrix of dimension (p x M), where p is the 

dimension of the input vector (number of input variables) and M the parameter is calculated above. (A) 
3. The simulation sequence h of the model is carried out for the M data (Eq. 6). 
 

)()(
ii

xfyXfY   (6) 

 
where: 
Y: output vector. 
X: input vector.  
f: model function. 
 
4. Starting from yi(i=1…M), compute for each simulation sequence h: 
a. Mean y(h) (Eq. 7). 
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where: 
M: number of Monte Carlo trials. 
y(h): mean of each simulation. 
 
b. Uncertainty u(y(h)), computed like the standard deviation (Eq. 8). 
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where: 
M: number of Monte Carlo trials. 
y(h): mean of each simulation. 
u(y(h)): uncertainty associated with each y(h). 
 
5. If h=1, increase it by 1 and return to step 4. 
 
6. After each simulation sequence, calculate: 
a. Mean and standard deviation of y(h)(Eq. 9). 
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where: 
h: number of simulation trials.  
y(i): mean of each simulation trial. 
ŷ: mean of all the simulation trials. 
Sŷ: standard deviation of the simulation trials. 
 
b. Mean and standard deviation of u(y(h))(Eq. 10). 
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where: 
h: number of simulation trials. 
y(i): mean of each simulation trial. 
u(y(i)): uncertainty associated with each simulation y(i). 
û(y): meanof the uncertainties associated witheachsimulation. 
sû(y): standard deviation of the uncertainties associated with each simulation. 
 
7. If any of the values of 2·Sŷ  or 2·Su(ŷ)  is larger than δ, increase h by 1 and return to step 4. 
The following graph (Figure 2) describes the entire process for estimating the uncertainty of the output data in a 
multilayer perceptron. 
 

Figure 2. Flowchart for the adaptive Monte Carlo method. Source: own elaboration    
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The evaluation of the confidence intervals quality is done with the prediction intervals coverage probability (PICP) 
(Khosravi et. al, 2011a; Khosravi et al. 2011a; Mazloumi et al., 2011) (Eq. 11) which measures the number of 
experimental data included within the confidence interval. This measure is a good indicator of the quality of the 
obtained confidence intervals (Khosravi et al., 2011b). 
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where: 
ntest: number of experimental data. 
Li y Ui: lower and upper limits of the confidence intervals of the i-th value. 
ti:i-thexperimental value. 
According to (Mazloumi et al., 2011) and (Khosravi et al., 2010), the PICP is expected to exceed 95%.  
All calculations were done with a specific computer program developed in MATLAB. 
 

Results 
Uncertainties on the input variables 
 
Uncertainties on the input and output variables were obtained from the test data calculated according to the 
propagation of uncertainty Theorem (Eq. 3). 
 
The values obtained for each one of the input parameters and their uncertainties are shown in the following Tables 2 
and 3. Those uncertainties are obtained from the calibration certificates of the instruments (Table 1) combined with the 
heterogeneity uncertainty from the variability of variables. 
 

Table 2. Input variables for the neural networl model. Source: own elaboration. 

Variable Mean Standard deviation Minimum Maximum Uncertainty 

Curing time (days) 43.2 30.3 7 91 0.04 

Additive (%) 2.0 0.35 1.6 2.5 1.2·10-2 

Additive (kg/m3) 12.7 3.8 8.5 18.6 0.7 

Microsilica (%) 7.5 2.0 5.0 10.0 6.6·10-2 

Microsilica (kg/m3) 48.1 15.0 26.6 74.6 0.8 

Water / cement ratio (A) 0.3 0.04 0.25 0.35 1.5·10-3 

Cement (kg/m3) 586.7 80.0 479.3 708.3 2.6 

Nominal maximum  
Aggregate size (“) 

1 0.06 0.75 1 2.2·10-3 

Sand (kg/m3) 423.7 93.3 282.5 546.9 2.9 
Table 3. Input constants for the neural networl model. Source: own elaboration. 

Parameter Value Uncertainty  

Water (L/m3) 186.4 0.7 
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Specific weight of sand 
(Ton/m3) 

2.7 8.1·10-4 

Coarse aggregate (kg/m3) 1006.2 0.7 

Specific weight of coarse 
aggregate (Ton/m3) 

2.7 8.1·10-4 

 
Artificial neural network 
 
The optimal architecture for a multilayer perceptron consists of an input layer of 15 variables, two hidden layers with 6 
and 1 neuron each and an output of one variable. The results of the training, validation and testing processes can be 
seen in the Table 4. 
 

Table 4. Result of the artificial neural network design. Source: own elaboration. 

Phase Structure R2 R Error (%) 

Training 
[15 6 1 1] 

0.81 0.90 4.3 
Validation  0.81 0.90 4.2 
Testing  0.80 0.89 4.2 

R and R2 are de correlation coefficients between experimental data 
(targets) and simulated data by the neural network (outputs). 

 
Figure 3 shows the correlations between the experimental data and the network results for the testing phase. 

 
Figure 3. Correlation between observed and predicted values for the testing set. Source: own elaboration. 

  

 
 

 
The coefficient of determination of the testing set (Table 4) is 0.80, indicating that the model is able to explain 80% of 
the samples variability. 
 
The Table 5 reflects the study of the differences between the experimental values and those obtained by the network 
for the testing set. 
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Table 5. ANOVA table comparing experimental results with those obtained by the artificial neural network for the testing set. Source: own elaboration. 

Source SS d.f. MS F P-value 

Columns 1267.2 1 1267.2 0.14 0.7 
Error 3445489.8 394 8744.9   
Total 3446756.0 395    
SS: sums of squares, d.f.: degrees of freedom, MS: mean squares (SS/d.f.), F: Fisher statistic, P-value: p-value for F. 

 
Since p-value is greater than 0.05, there are no significant differences between the experimental values and those 
obtained by the artificial neural network, at 95% significance level. 
 

Simulation of the uncertainty through Monte Carlo simulation 

 
Uncertainty results obtained through the Monte Carlo simulation on the training, validation and testing data sets are 
shown in the Table 6. 
 

Table 6. PICP for all the data sets. Source: own elaboration. 

Set PICP (%) 

Training 98.3 
Validation 98.2 
Testing 97.8 

 

Discussion 
 
The results obtained with the neural network are within the range of values obtained in other studies of modeling 
concrete properties. The results obtained with correlation coefficients between 0.90 and 0.91 are consistent with those 
obtained by other authors (Lee, 2003; Oztas, Pala, Ozbay, Kanka, Caglar & Bhatti, 2006; Ukrainczyk & Ukrainczyk, 2008; 
Ozerdem & Kolukisa, 2009; Prasad, Eskandari & Reddy, 2009; Yaprak, Karaci & Demir, 2013), who obtained correlation 
coefficients between 0.81 and 0.98. 
 
Similarly, the determination coefficients (R2 = 0.80 and R2 = 0.81) are higher than those reported by Yeh (1998) and 
similar to those by Ozturan, Kutlu & Ozturan (2008), who obtained maximum coefficients of 0.78. 
 
The values obtained for PICP are about 98% (Table 6) indicating that nearly all the experimental data are included within 
the confidence interval. These values for the PICP are above 95% level indicated by Mazloumi et al. (2011) and are within 
ranges obtained by Mazloumi et al. (2011), Khosravi et al. (2011a) or Khosravi et al. (2011b), who obtained confidence 
intervals between 75% and 100%, depending on the method used for the simulation. 
 
Our result obtained is better than the result reported in a study of confidence intervals for the forecasts in energy 
markets (Khosravi et al., 2010), where PICP between 92.6% and 94.1% were obtained. 
 
The result is also superior to the one obtained by Shrivastava & Panigrahi (2013) on a study of confidence intervals for 
the demand prediction in the electricity market, which obtained a PICP between 50% and 100%. 
 
It is also higher than results reported by Wan et al. (2014), with 95% of coverage factor, obtained a PICP between 89.6% 
and 99.6%, depending on the modeling method. And it is consistent with the results of Khosravi & Nahavandi (2014), 
with obtained PICP values over 95% with more than 50 simulations. 

 

Conclusions 
 
An artificial neural network has been obtained with a confidence level such that could be used as an alternative to the 
standard method to predict results of compressive strength of high-strength concrete. 
 
Monte Carlo method has been used to obtain the uncertainty on the output values of an artificial neural network, 
resulting in confidence level similar to those of other studies. 
 
Therefore, these results have proven the validity of using the Monte Carlo method to simulate the uncertainty in 
compressive strength values obtained with an artificial neural network. 
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The possibility of using artificial neural networks is opened for in-factory control of compressive strength, since the 
uncertainty associated with the test permits the evaluation of the degree of compliance / non-compliance with a 
specification when the results are close to the specification limits. 
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