Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers


  • Yurdakul Aygörmez Yildiz Technical University, Department of Civil Engineering Davutpasa Campus, 34220, Esenler, Istanbul (Turkey)
  • Orhan Canpolat Yildiz Technical University, Department of Civil Engineering Davutpasa Campus, 34220, Esenler, Istanbul (Turkey)




geopolymer, metakaolin, colemanite waste, silica fume, sulfuric acid, hydrochloric acid


For this paper, silica fume (SF), slag (S), and colemanite waste (C) were added to metakaolin (MK)-based geopolymer composites and exposed to 10% (by volume) hydrochloric acid (HCl) and sulfuric acid (H2SO4) solutions for up to 12 months. Geopolymer composites were examined in terms of weight loss, compressive strength, and flexural strength at 3, 6, and 12 months in solutions. Furthermore, Scanning Electron Microscopy (SEM), Micro-computed Tomography (micro-CT), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) analyses were carried out to examine the microstructure before and after acid attacks. An important decrease in flexural and compressive strengths was seen when geopolymer mortars were subjected to sulfuric and hydrochloric acid attacks. The main cause of this situation is the deterioration of the oxy-aluminum bridge (-Al-Si-O) when exposed to sulfuric and hydrochloric acid. The oxy-aluminum bridge (-Al-Si-O), the primary factor in the geopolymer matrix, plays a significant role in consolidating the gel and enhancing the bond formed between the matrix components. Despite this, geopolymer mortar samples maintain the aluminosilicate structure. Compared to hydrochloric acid, sulfuric acid is a stronger solution, resulting in a greater loss of compressive and flexural strengths.


Download data is not yet available.


Afridi, S., Sikandar, M. A., Waseem, M., Nasir, H., & Naseer, A. (2019). Chemical durability of superabsorbent polymer (SAP) based geopolymer mortars (GPMs). Construction and Building Materials, 217, 530–542. https://doi.org/10.1016/j.conbuildmat.2019.05.101

Aguiar, J. B., Camões, A., & Moreira, P. M. (2008). Coatings for concrete protection against aggressive environments. Journal of Advanced Concrete Technology, 6(1), 243–250. https://doi.org/10.3151/jact.6.243

Aiken, T. A., Kwasny, J., Sha, W., & Soutsos, M. N. (2018). Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack. Cement and Concrete Research, 111(May), 23–40. https://doi.org/10.1016/j.cemconres.2018.06.011

Ali, N., Canpolat, O., Aygörmez, Y., & Al-Mashhadani, M. M. (2020). Evaluation of the 12–24 mm basalt fibers and boron waste on reinforced metakaolin-based geopolymer. Construction and Building Materials, 251, 118976. https://doi.org/10.1016/j.conbuildmat.2020.118976

Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25(4-5 SPEC), 473–481. https://doi.org/10.1016/S0958-9465(02)00087-2

Arslan, A. A., Uysal, M., Yılmaz, A., Al-mashhadani, M. M., Canpolat, O., Şahin, F., & Aygörmez, Y. (2019). Influence of wetting-drying curing system on the performance of fiber reinforced metakaolin-based geopolymer composites. Construction and Building Materials, 225, 909–926. https://doi.org/10.1016/j.conbuildmat.2019.07.235

Aygörmez, Y., Canpolat, O., & Al-mashhadani, M. M. (2020a). A survey on one-year strength performance of reinforced geopolymer composites. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120267

Aygörmez, Y., Canpolat, O., & Al-mashhadani, M. M. (2020b). Assessment of geopolymer composites durability at one-year age. Journal of Building Engineering, 32(April). https://doi.org/10.1016/j.jobe.2020.101453

Aygörmez, Y., Al-mashhadani, M. M., & Canpolat, O. (2020c). High-temperature effects on white cement-based slurry infiltrated fiber concrete with metakaolin and fly ash additive. Revista de La Construccion, 19(2), 324–333. https://doi.org/10.7764/RDLC.19.2.324

Aygörmez, Y., Canpolat, O., Al-mashhadani, M. M., & Uysal, M. (2020d). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Construction and Building Materials, 235. https://doi.org/10.1016/j.conbuildmat.2019.117502

Bani Ardalan, R., Joshaghani, A., & Hooton, R. D. (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials, 134, 116–122. https://doi.org/10.1016/j.conbuildmat.2016.12.090

Belmokhtar, N., Ammari, M., Brigui, J., & Ben allal, L. (2017). Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Construction and Building Materials, 146, 621–629. https://doi.org/10.1016/j.conbuildmat.2017.04.127

Bouguermouh, K., Bouzidi, N., Mahtout, L., Pérez-Villarejo, L., & Martínez-Cartas, M. L. (2017). Effect of acid attack on microstructure and composition of metakaolin-based geopolymers: The role of alkaline activator. Journal of Non-Crystalline Solids, 463, 128–137. https://doi.org/10.1016/j.jnoncrysol.2017.03.011

Celik, A., Yilmaz, K., Canpolat, O., Al-mashhadani, M. M., Aygörmez, Y., & Uysal, M. (2018). High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials, 187, 1190–1203. https://doi.org/10.1016/j.conbuildmat.2018.08.062

Chang, J. J., Yeih, W., & Hung, C. C. (2005). Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement and Concrete Composites, 27(1), 85–91. https://doi.org/10.1016/j.cemconcomp.2003.12.001

Chen, L., Wang, Z., Wang, Y., & Feng, J. (2016). Preparation and properties of alkali activated metakaolin-based geopolymer. Materials, 9(9), 1–12. https://doi.org/10.3390/ma9090767

Chindaprasirt, P., Rattanasak, U., & Taebuanhuad, S. (2013). Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Materials and Structures/Materiaux et Constructions, 46(3), 375–381. https://doi.org/10.1617/s11527-012-9907-1

Criado, M., Fernández-Jiménez, A., Palomo, A., Sobrados, I., & Sanz, J. (2008). Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey. Microporous and Mesoporous Materials, 109(1–3), 525–534. https://doi.org/10.1016/j.micromeso.2007.05.062

Çevik, A., Alzeebaree, R., Humur, G., Niş, A., & Gülşan, M. E. (2018). Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), 12253–12264. https://doi.org/10.1016/j.ceramint.2018.04.009

Davidovits, J. (2020). Geopolymer Chemistry and Applications. 5-th edition. In J. Davidovits.–Saint-Quentin, France (Issue January 2008).

Degirmenci, F. N. (2017). Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans. Ceramics - Silikaty, 61(4), 340–350. https://doi.org/10.13168/cs.2017.0033

Elyamany, H. E., Abd Elmoaty, A. E. M., & Elshaboury, A. M. (2018). Magnesium sulfate resistance of geopolymer mortar. Construction and Building Materials, 184, 111–127. https://doi.org/10.1016/j.conbuildmat.2018.06.212

Khan, H. A., Castel, A., Khan, M. S. H., & Mahmood, A. H. (2019). Durability of calcium aluminate and sulphate resistant Portland cement based mortars in aggressive sewer environment and sulphuric acid. Cement and Concrete Research, 124, 105852. https://doi.org/10.1016/j.cemconres.2019.105852

Kula, I., Olgun, A., Erdogan, Y., & Sevinc, V. (2001). Effects of colemanite waste, cool bottom ash, and fly ash on the properties of cement. Cement and Concrete Research, 31(3), 491–494. https://doi.org/10.1016/S0008-8846(00)00486-5

Kwasny, J., Aiken, T. A., Soutsos, M. N., McIntosh, J. A., & Cleland, D. J. (2018). Sulfate and acid resistance of lithomarge-based geopolymer mortars. Construction and Building Materials, 166, 537–553. https://doi.org/10.1016/j.conbuildmat.2018.01.129

Mehta, A., & Siddique, R. (2017). Sulfuric acid resistance of fly ash based geopolymer concrete. Construction and Building Materials, 146, 136–143. https://doi.org/10.1016/j.conbuildmat.2017.04.077

Mobili, A., Belli, A., Giosuè, C., Bellezze, T., & Tittarelli, F. (2016). Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class. Cement and Concrete Research, 88, 198–210. https://doi.org/10.1016/j.cemconres.2016.07.004

Nematollahi, B., Qiu, J., Yang, E. H., & Sanjayan, J. (2017). Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceramics International, 43(17), 15616–15625. https://doi.org/10.1016/j.ceramint.2017.08.118

Omrane, M., Kenai, S., Kadri, E. H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415–430. https://doi.org/10.1016/j.jclepro.2017.07.139

Perná, I., Šupová, M., Hanzlíček, T., & Špaldoňová, A. (2019). The synthesis and characterization of geopolymers based on metakaolin and high LOI straw ash. Construction and Building Materials, 228. https://doi.org/10.1016/j.conbuildmat.2019.116765

Pimraksa, K., Chindaprasirt, P., Rungchet, A., Sagoe-Crentsil, K., & Sato, T. (2011). Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios. Materials Science and Engineering A, 528(21), 6616–6623. https://doi.org/10.1016/j.msea.2011.04.044

Preethi, R. K., & Venkatarama Reddy, B. V. (2020). Experimental investigations on geopolymer stabilised compressed earth products. Construction and Building Materials, 257, 119563. https://doi.org/10.1016/j.conbuildmat.2020.119563

Rajamane, N. P., Nataraja, M. C., Lakshmanan, N., Dattatreya, J. K., & Sabitha, D. (2012). Sulphuric acid resistant ecofriendly concrete from geopolymerisation of blast furnace slag. Indian Journal of Engineering and Materials Sciences, 19(5), 357–367.

Rivera, J. F., De Gutierrez, R. M., Mejia, J. M., & Gordillo, M. (2014). Hybrid cement based on the alkali activation of by-products of coal. Revista de La Construccion, 13(2), 31–39. https://doi.org/10.4067/s0718-915x2014000200004

Sata, V., Sathonsaowaphak, A., & Chindaprasirt, P. (2012). Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cement and Concrete Composites, 34(5), 700–708. https://doi.org/10.1016/j.cemconcomp.2012.01.010

Sevim, U. K. (2011). Colemanite ore waste concrete with low shrinkage and high split tensile strength. Materials and Structures/Materiaux et Constructions, 44(1), 187–193. https://doi.org/10.1617/s11527-010-9618-4

Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

Song, X. J., Marosszeky, M., Brungs, M., & Munn, R. (2005, April). Durability of fly ash based geopolymer concrete against sulphuric acid attack. In International Conference on Durability of Building Materials and Components (Vol. 10).

Tahri, W., Abdollahnejad, Z., Mendes, J., Pacheco-Torgal, F., & de Aguiar, J. B. (2017). Cost efficiency and resistance to chemical attack of a fly ash geopolymeric mortar versus epoxy resin and acrylic paint coatings. European Journal of Environmental and Civil Engineering, 21(5), 555–571. https://doi.org/10.1080/19648189.2015.1134674

Uysal, M., Al-mashhadani, M. M., Aygörmez, Y., & Canpolat, O. (2018). Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars. Construction and Building Materials, 176. https://doi.org/10.1016/j.conbuildmat.2018.05.034

Vafaei, M., Allahverdi, A., Dong, P., & Bassim, N. (2018). Acid attack on geopolymer cement mortar based on waste-glass powder and calcium aluminate cement at mild concentration. Construction and Building Materials, 193, 363–372. https://doi.org/10.1016/j.conbuildmat.2018.10.203

Wu, Z., Khayat, K. H., & Shi, C. (2019). Changes in rheology and mechanical properties of ultra-high performance concrete with silica fume content. Cement and Concrete Research, 123(October 2018), 105786. https://doi.org/10.1016/j.cemconres.2019.105786

Yang, T., Zhu, H., & Zhang, Z. (2017). Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Construction and Building Materials, 153, 284–293. https://doi.org/10.1016/j.conbuildmat.2017.05.067

Yankwa Djobo, J. N., Elimbi, A., Kouamo Tchakouté, H., & Kumar, S. (2016). Mechanical properties and durability of volcanic ash based geopolymer mortars. Construction and Building Materials, 124, 606–614. https://doi.org/10.1016/j.conbuildmat.2016.07.141

Zhang, Z., Wang, H., Zhu, Y., Reid, A., Provis, J. L., & Bullen, F. (2014). Using fly ash to partially substitute metakaolin in geopolymer synthesis. Applied Clay Science, 88–89, 194–201. https://doi.org/10.1016/j.clay.2013.12.025




How to Cite

Aygörmez, Y., & Canpolat , O. . (2021). Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers. Revista De La Construcción. Journal of Construction, 20(2), 291–307. https://doi.org/10.7764/RDLC.20.2.291