Investigation of physical properties of base and SBS modified bitumens by rheological test methods

Authors

  • Taylan Gunay Department of Civil Engineering, Ege University, Izmir (Türkiye)

DOI:

https://doi.org/10.7764/RDLC.21.2.281

Keywords:

rheology, bitumen, polymer modification, viscoelasticity, master curves

Abstract

Bitumen is modified with various modifiers to diminish the deformation occurred in flexible pavements due to traffic loads and the effects of climate. Polymer modification and more specifically Styrene-Butadiene-Styrene (SBS) copolymer modification is one of the most common methods to enhance the physical properties of bitumen. However, the polymer modified bitumens could exhibit different rheological properties compared to original bitumen. In this work, it is aimed to investigate the effects of SBS copolymer on thermorheological properties of bitumen by means of state of art test methods. To this end, a rheological program including small amplitude oscillation shear test (SAOS), construction of master curves by using time-temperature superposition (TTS) principle, determination of zero shear viscosity (ZSV) and multiple shear creep recovery tests (MSCR) were employed along with other fundamental tests. SAOS test result signifies a positive effect of SBS on the viscoelastic deformation nature of bitumen. The master curves of the complex viscosity of binders reveal that SBS modifier reduced the Newtonian flow properties of bitumen. The decrements in non-recoverable creep compliance and the increment in percent recovery signify that SBS modifier has dramatically enhanced the applicability of bitumen as a binder in flexible pavement at mid to high-temperature ranges.

References

AASHTO, M. 3. (2010). Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test. American Associ-ation of State Highway and Transportation Officials.

Airey, G. D. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel, 82 (14), 1709–1719.

Anderson, D. A., Le Hir, Y. M., Planche, J.-P., Martin, D., & Shenoy, A. (2002). Zero shear viscosity of asphalt binders. Transportation Research Record, 1810 (1), 54–62.

Anderson, M., D’Angelo, J., & Walker, D. (2010). Mscr: A better tool for characterizing high temperature performance properties. Asphalt, 25 (2).

ASTM, D 4402 (2006) standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. Annual Book of ASTM Standards, 4.

ASTM, D36. (2006). Standard test method for softening point of bitumen. USA, ASTM International.

ASTM, D4402. (2015). Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. In American society for testing and materials.

ASTM, D5. (2013). Standard test method for penetration of bituminous materials. USA, ASTM International.

ASTM, D2872. (2012). Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). American Society for Test-ing and Materials, West Conshohocken, PA.

Behzadfar, E., & Hatzikiriakos, S. G. (2013). Viscoelastic properties and constitutive modelling of bitumen. Fuel, 108, 391–399.

Cao, Z., Chen, M., Liu, Z., He, B., Yu, J., & Xue, L. (2019). Effect of different rejuvenators on the rheological properties of aged sbs modified bitumen in long term aging. Construction and Building Materials, 215, 709–717.

Chailleux, E., Ramond, G., Such, C., & de La Roche, C. (2006). A mathematical-based master-curve construction method applied to complex modulus of bituminous materials. Road Materials and Pavement Design, 7 (sup1), 75–92.

Chan, T., Shyu, G., & Isayev, A. (1995). Master curve approach to polymer crystallization kinetics. Polymer Engineering & Science, 35 (9), 733–740.

Dobson, G., Monismith, C., Puzinauskas, V., & Busching, H. (1969). The dynamic mechanical properties of bitumen. In Association of asphalt paving technologists proc.

Dong, F., Zhao, W., Zhang, Y., Wei, J., Fan, W., Yu, Y., & Wang, Z. (2014). Influence of sbs and asphalt on sbs dispersion and the performance of modi-fied asphalt. Construction and Building Materials, 62, 1–7.

Galooyak, S. S., Dabir, B., Nazarbeygi, A. E., & Moeini, A. (2010). Rheological properties and storage stability of bitumen/sbs/montmorillonite composites. Construction and building materials, 24 (3), 300–307.

Garcia-Morales, M., Partal, P., Navarro, F., Martinez-Boza, F., Gallegos, C., González, N., Muñoz, M. (2004). Viscous properties and microstructure of recycled eva modified bitumen. Fuel, 83 (1), 31–38.

Gunay, T., Tomkovic, T., & Hatzikiriakos, S. G. (2020). Thermorheological properties of asphalt binders. The Canadian Journal of Chemical Engineering, 98 (8), 1803–1814.

Habib, N. Z., Kamaruddin, I., Napiah, M., & Isa, M. T. (2011). Rheological properties of polyethylene and polypropylene modified bitumen. International Journal Civil and Environmental Engineering, 3 (2), 96–100.

Jahanbakhsh, H., Karimi, M. M., & Nejad, F. M. (2020). Correlation between asphalt concrete induced healing and rheological properties of asphalt binder. Construction and Building Materials, 265, 120577.

Kaya Ozdemir, D., Topal, A., Kacmaz, B., & Sengoz, B. (2020). Evaluating the asphalt pavement's surface characteristics by field testing. Revista de la construcción, 19(3), 474-485.

Kaya, D., Topal, A., & McNally, T. (2019). Correlation of processing parameters and ageing with the phase morphology of styrene-butadiene-styrene block co-polymer modified bitumen. Materials Research Express, 6(10), 105309.

Król, J., Radziszewski, P., & Kowalski, K. J. (2015). Influence of microstructural behavior on multiple stress creep recovery (mscr) in modified bitumen. Procedia Engineering, 111, 478–484.

Laukkanen, O.-V., & Winter, H. H. (2018). Strain accumulation in bituminous binders under repeated creep-recovery loading predicted from small-amplitude oscillatory shear (saos) experiments. Mechanics of Time-Dependent Materials, 22 (4), 499–518.

Loeber, L., Muller, G., Morel, J., & Sutton, O. (1998). Bitumen in colloid science: A chemical, structural and rheological approach. Fuel, 77 (13), 1443–1450.

Lytton, R. L., Uzan, J., Fernando, E. G., Roque, R., Hiltunen, D., & Stoffels, S. M. (1993). Development and validation of performance prediction models and specifications for asphalt binders and paving mixes. Strategic Highway Research Program Washington, DC.

McNally, T. (2011). Polymer modified bitumen: Properties and characterisation. Elsevier.

Mezger, T. (2011). Basics of rheology workshop 2011. Applied Rheology, 21 (5), 303–304.

Morea, F., Agnusdei, J., & Zerbino, R. (2010). Comparison of methods for measuring zero shear viscosity in asphalts. Materials and structures, 43 (4), 499–507.

Read, J., & Whiteoak, D. (2003). The shell bitumen handbook. Thomas Telford.

Roman, C., & Garcıéa-Morales, M. (2018). Comparative assessment of the effect of micro and nano-fillers on the microstructure and linear viscoelasticity of polyethylene-bitumen mastics. Construction and Building Materials, 169, 83–92.

Saboo, N., & Kumar, P. (2016). Use of flow properties for rheological modeling of bitumen. International Journal of Pavement Research and Technology, 9 (1), 63–72.

Saboo, N., Kumar, R., Kumar, P., & Gupta, A. (2018). Ranking the rheological response of sbs-and eva-modified bitumen using mscr and las tests. Journal of Materials in Civil Engineering, 30 (8), 04018165.

Sengoz, B., & Isikyakar, G. (2008). Evaluation of the properties and microstructure of sbs and eva polymer modified bitumen. Construction and Building Materials, 22 (9), 1897–1905.

Wang, H., Liu, X., Apostolidis, P., & Scarpas, T. (2018). Non-newtonian behaviors of crumb rubber-modified bituminous binders. Applied Sciences, 8 (10), 1760.

Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical society, 77 (14), 3701–3707.

Wu, S.-p., Pang, L., Mo, L.-t., Chen, Y.-c., & Zhu, G.-j. (2009). Influence of aging on the evolution of structure, morphology and rheology of base and sbs modified bitumen. Construction and Building Materials, 23 (2), 1005–1010.

Vega-Zamanillo, Ángel, Calzada-Pérez, M. Ángel, Lastra-González, P., Indacoechea-Vega, I., & Fernández-Ortega, J. Ángel. (2020). Analysis of the use of cupola furnace slags, green sand and reclaimed asphalt pavement in asphalt concrete mixtures for low intensity traffic. Revista De La Construc-ción. Journal of Construction, 16(2), 229-237. https://doi.org/10.7764/RDLC.16.2.229

Yang, X., & You, Z. (2015). High temperature performance evaluation of bio-oil modified asphalt binders using the dsr and mscr tests. Construction and building Materials, 76, 380–387.

Yang, Y., Zhang, Y., Omairey, E., Cai, J., Gu, F., & Bridgwater, A. V. (2018). Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen. Journal of Cleaner Production, 187, 390–399.

Zaniewski, J. P., & Pumphrey, M. E. (2004). Evaluation of performance graded asphalt binder equipment and testing protocol. Asphalt technology pro-gram, 107, 376–384.

Zhang, X., Zou, G., & Xu, J. (2009). Measurement of zero-shear viscosity in asphalt. International Journal of Pavement Research and Technology, 2 (1), 33.

Zhang, Y., & Gao, Y. (2021). Predicting crack growth in viscoelastic bitumen under a rotational shear fatigue load. Road materials and pavement design, 22 (3), 603–622.

Downloads

Published

2022-08-31 — Updated on 2022-08-31

Versions

How to Cite

Gunay , T. . (2022). Investigation of physical properties of base and SBS modified bitumens by rheological test methods. Revista De La Construcción. Journal of Construction, 21(2), 281–294. https://doi.org/10.7764/RDLC.21.2.281