Soil-structure interaction analysis of Çelebiağa Mosque, Pertek-Türkiye

Authors

  • Özgür Yıldız Faculty of Engineering and Natural Sciences, Civil Engineering Department, Malatya Turgut Özal University, Malatya (Türkiye)
  • Ebru Doğan Faculty of Art, Design and Architecture, Architecture Department, Malatya Turgut Özal University, Malatya (Türkiye)

DOI:

https://doi.org/10.7764/RDLC.21.3.749

Keywords:

Masonry structure, relocation, earthquake, soil-structure interaction, SAP2000.

Abstract

After the construction of the Keban Dam, some settlements with historical, cultural, and natural value were flooded. A scientific committee consisting of academicians and public authorities decided to the relocation of the buildings including the historical Çelebiağa Mosque. In this study, the seismic soil-structure interaction analysis of the historical Çelebiağa Mosque, which was dismantled and reconstructed in a separate region due to the construction of the Keban Dam was carried out. The analysis of the masonry mosque was performed with the SAP2000 finite element analysis software. The Winkler foundation model was used to idealize the soil environment on which the historical mosque was built. The effects of soil-structure interaction on historical masonry mosque were examined in terms of transmitted acceleration, response spectra, and lateral displacement at various heights of the structure. Depending on the results of the analysis, the effects of soil-structure interaction of a reconstructed historical masonry building were investigated. PGA was obtained as 0.51g at the flag level of the minaret under the Kocaeli earthquake and 0.94g under the Sivrice earthquake. Again, the maximum horizontal displacements of the minaret at the flag level were obtained as 11 cm and 8.5 cm under the Kocaeli and Sivrice earthquakes. The behavior of historical masonry structures under earthquake loads has been interpreted by considering the geological conditions.

References

Aydemir, M.E. (2010). Zemin Yapı Etkileşiminin Yapısal Davranış Parametreleri Üzerine Etkisi. M.Sc Thesis, Yıldız Teknik Üniversitesi, Türkiye. (In Turkish)

Aydınoğlu, M. N. (2011). Zayıf zeminlerde yapılan binalarda dinamik yapı-kazık-zemin etkileşimi için uygulamaya yönelik bir hesap yöntemi. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Deprem Mühendisliği Bölümü, Rapor, (2011/1). (In Turkish)

Balaban, T. Ö., Okan, Ö. Ö., Sancar, T., & Önal, A. Ö. (2020). Pertek (Tunceli) Jeotermal Alanının Antropojenik Kirliliğinin Değerlendirmesi. Türkiye Jeoloji Bülteni, 63(1), 83-96. (In Turkish)

Bayrak, O.F., Bikçe, M. & Erdem, M.M. (2021). Failures of structures during the January 24, 2020, Sivrice (Elazığ) Earthquake in Turkey. Nat Hazards 108:1943–1969. https://doi.org/10.1007/s11069-021-04764-z.

Bayraktar, A., & Hökelekli, E. (2020). Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems. Soil Dynamics and Earthquake Engineering, 139, 106368.

Borja RI, Chao HY, Montans FJ & Lin CH. 1998. Nonlinear SSI Analysis. Preproceedings UJNR Workshopon Soil Structure Interaction, California.

Brando, G., Pagliaroli, A., Cocco, G., & Di Buccio, F. (2020). Site effects and damage scenarios: The case study of two historic centers following the 2016 Central Italy earthquake. Engineering geology, 272, 105647.

Brunelli, A., De Silva, F., Piro, A., Parisi, F., Sica, S., Silvestri, F., & Cattari, S. (2021). Numerical simulation of the seismic response and soil–structure interaction for a monitored masonry school building damaged by the 2016 Central Italy earthquake. Bulletin of Earthquake Engineering, 19(2), 1181-1211.

Burat, O. (1973). Pertek Baysungur Camii’nin Taşınması. Vakıflar Dergisi 10: 290-298.

Casolo, S., Milani, G., Uva, G., & Alessandri, C. (2013). Comparative seismic vulnerability analysis on ten masonry towers in the coastal Po Valley in Italy. Engineering Structures, 49, 465-490.

Celep, Z., & Kumbasar, N. (2004). Deprem muhendisligine giris ve depreme dayanikli yapi tasarimi. Beta Dagitim, Istanbul. (In Turkish)

Danık, E. (2004) Pertek Baysungur ve Ali Çelebi Camii. Vakıflar Dergisi 28: 185-210. (In Turkish)

De Silva, F. (2020). Influence of soil-structure interaction on the site-specific seismic demand to masonry towers. Soil Dynamics and Earthquake Engineer-ing, 131, 106023.

Dok, G., Aktaş, M. & Kırtel, O. (2015). Effect of Number of Story and Soıl Class in Nonlınear Pushover Analysıs of Two Dımensıonal Rc Frames Consıderıng Soıl Structure Interactıon. In: Eighth National Conference on Earthquake Engineering, Istanbul, Turkey, 11May-14 May 2015.

Erder, C., Stoop, P., Pratt, P.P., Bakırer, Ö., Tükel, A., Tayga, N., Rhodes, L., Mad, E., Özdural, A. & Üstünkök, O. (1967). Doomed by the Dam. Ankara: Türk Tarih Kurumu Basımevi, pp.6.

Fleming, J.F., Screwvala, F.N. & Kondner, R.L. (1965). Foundation Superstructure Interaction Under Earthquake Motion. In: Third World Conference on Earthquake Engineering, New Zealand, 22 January-1 Fabruary 1965, Vol.1 pp.122-130.

GDDA, General Directorate of Disaster Afairs (2019). Seismic Hazard Map of Turkey. Ministry of Public Works and Settlement of Turkey, Ankara (In Turkish

Güllü, H. & Pala, M. (2014). On the resonance effect by dynamic soil–structure interaction: a revelation study. Natural Hazards 72(2): 827-847.

Günaydin, M., Atmaca, B., Demir S, et al. (2021). Seismic damage assessment of masonry buildings in Elazığ and Malatya following the 2020 Elazığ-Sivrice earthquake. Bulletin of Earthquake Engineering 19(6): 2421-2456.

Gündüz, Z. & Arman, H. (2005). Zemin Davranışına Uygun Yapı Tasarımı İlkeleri ve Uygulanabilirliği. In: Kocaeli 2005 Deprem Sempozyumu, İzmit, Türkiye, 23-25 March 2005, pp. 1237-1243. Kocaeli Üniversitesi. (In Turkish)

Herece, E.İ. & Acar, Ş. (2016). Pertek (Tunceli) dolayının Üst Kretase Tersiyer Jeolojisi/ Stratigrafisi. MTA Dergisi 153: 1-43. (In Turkish)

Kaptan, K. & Tezcan, S. (2012). Deprem Dalgalarinin Zemin Büyütmesi Üzerine Örnekler. TÜBAV Bilim Dergisi, 5(4), 17-32. (In Turkish)

Karasözen, E., Özacar, A. A., Biryol, C. B., & Beck, S. L. (2014). Seismicity, focal mechanisms and active stress field around the central segment of the North Anatolian Fault in Turkey. Geophysical Journal International, 196(1), 405-421.

Kılıç, İ., Bozdoğan K..B, Aydın, S., Gök, S.G. & Gündoğan, S. (2020). Kule tipi yapıların dinamik davranışının belirlenmesi: Kırklareli Hızırbey Camii minaresi örneği. Politeknik Dergisi 23(1): 19-26. (In Turkish)

Lysmer, J. & Kuhlemeyer, R.L. (1969). Finite Dynamic Model for Infinite Media. Journal of the Engineering Mechanics Division, ASCE. 95(4): 859-877.

Milani, G., Casolo, S., Naliato, A., & Tralli, A. (2012). Seismic assessment of a medieval masonry tower in Northern Italy by limit, nonlinear static, and full dynamic analyses. International Journal of Architectural Heritage, 6(5), 489-524.

Petridis, C., & Pitilakis, D. (2020). Fragility curve modifiers for reinforced concrete dual buildings, including nonlinear site effects and soil–structure interaction. Earthquake Spectra, 36(4), 1930-1951.

Sextos, A., De Risi, R., Pagliaroli, A., Foti, S., Passeri, F., Ausilio, E., ... & Zimmaro, P. (2018). Local site effects and incremental damage of buildings during the 2016 Central Italy earthquake sequence. Earthquake Spectra, 34(4), 1639-1669.

Sorrentino, L., Cattari, S., Da Porto, F., Magenes, G., & Penna, A. (2019). Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bulletin of Earthquake Engineering, 17(10), 5583-5607.

Stewart, J. P., Zimmaro, P., Lanzo, G., Mazzoni, S., Ausilio, E., Aversa, S., ... & Tropeano, G. (2018). Reconnaissance of 2016 Central Italy earthquake sequence. Earthquake Spectra, 34(4), 1547-1555.

Tatar, Y. (1987). Elazığ bölgesinin tektonik yapıları ve Landsat fotğrafları üzerinde yapılan bazı gözlemler. H.Ü. Yerbilimleri Dergisi 14: 295-308.

Tükel, A & Bakırer, Ö. (1970). 1968 Yılı Keban Projesi Restorasyon Çalışmaları Ön Raporu, Report for 1968 Yaz Çalışmaları. Report no. 1, Ankara, Türki-ye.

Türkeli, E. (2020). Payanda ve FRP ile Güçlendirilmiş Betonarme Minarelerin Karşılaştırmalı Sismik Analizi. Doğal Afetler ve Çevre Dergsi 6:1–18. https://doi.org/10.21324/dacd.573368 (In Turkish)

Ural, A. & Celik, T. (2018). Dynamic Analyses and Seismic Behavior of Masonry Minarets with single Balcony. Aksaray University Journal of Science and Engineering 2(1): 13-27.

Varol, K. O. Ç. (2016). Depreme maruz kalmış yığma ve kırsal yapı davranışlarının incelenerek yığma yapı yapımında dikkat edilmesi gereken kuralların derlenmesi. Çanakkale onsekiz mart üniversitesi fen bilimleri enstitüsü dergisi, 2(1), 36-57. (In Turkish)

Waas, G. (1972). Analysis Method for Footing Vibrations Thorough Layered Media. Report for Earth Vibration Effects and Abatement for Military Facili-ties. Report 3, 01 September 1972. US Army Engineer Waterways Experiment Station, Missisipi.

Wilson, E.L. (1969). A Method of Analysis for the Evaluation of FoundationStructure Interaction. Proceedings of the Fourth World Conference on Earth-quake Engineering, pp. 87-89. Santiago-Chile.

Yıldız, Ö., Doğan, E. & Yamak, F.B. (2021). Seismic soil-structure ınteraction of a masonry structure: Sungurbey Mosque. International Journal of Innova-tive Engineering Application 5(2): 273-249. https://doi.org/10.46460/ijiea.1004627.

Kausel, E. (1988) “Local transmitting boundaries”, J. Eng. Mech. Div. ASCE, Vol 114, pp.1011-1027.

Mengi, Y. And Tanrıkulu, A.K. (1993) “Absorbing boundary conditions in soil-structure analyses” in Dynamic Soil-Structure Interaction, ed. P Gülkan & R.W. Clough. ATO Advanced Study Institute, Kemer-Antalya, Turkey, July 8-16 1992, Kluwer Academic, Dordrecht, 1993, pp.111-146.

Downloads

Published

2022-12-29

How to Cite

Yıldız, . Özgür ., & Doğan, E. . (2022). Soil-structure interaction analysis of Çelebiağa Mosque, Pertek-Türkiye. Revista De La Construcción. Journal of Construction, 21(3), 749–766. https://doi.org/10.7764/RDLC.21.3.749