Feasibility study of dealuminated kaolin utilization in marine constructions

Authors

  • Hazem I. Bendary Chemical Engineering Department, The Higher Institute of Engineering, Cairo (Egypt)
  • Mohamed Heikal Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)
  • Mohamed A. Ali School of Biotechnology, Badr University in Cairo (BUC), Cairo (Egypt)
  • Djamel Ghernaout Chemical Engineering Department, College of Engineering, University of Ha’il, Ha’il (Saudi Arabia)
  • Noureddine Elboughdiri Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes (Tunisia)

DOI:

https://doi.org/10.7764/RDLC.22.2.509

Keywords:

Marine environment, sulfate attack, blended cement, dealuminate.

Abstract

In the marine environment, the resistance of cement structures to salts is the most critical factor affecting their life span. We investigated the sulfate attack of ordinary Portland cement (OPC) and dealuminated kaolin (DK) blended cement in the marine environment. The performance of this cement was assessed by immersing the mortar specimens in fresh seawater for one year and measuring the strength development, reduction in compressive strength, expansion due to (SO42-) penetration, and weight change of the mortar specimens using the standard test methods. The results proved clearly that 7.5% (DK) blended cement mortar specimen is the best achieved the lowest reduction in compressive strength (10%), a relatively small weight gain (0.62%), and expanded to less than 0.10% at 1-year exposure so it is considered sulfate resistant.

References

Abdelaziz, G. E., Abdelalim, A. M. K., Ghorab, H. Y., & Elsayed, M. S. (2010). Characterization of OPC Matrix Containing. Concrete Research Letters, 1(December), 131–141. Retrieved from https://www.semanticscholar.org/paper/Characterization-of-OPC-Matrix-Containing-Kaolin-Abdelaziz-Abdelalim/90222f6d69fd979e04e075615f91dbdad2846505#citing-papers

Abdelmawla, M., Abdelaal, A., Beheary, M. S., Abdullah, N. A., & Razek, T. M. A. (2020). Solidification of Alum Industry Waste for Producing Geopoly-mer Mortar. Egyptian Journal of Chemistry, 63(11), 4285–4294. https://doi.org/10.21608/EJCHEM.2020.25720.2504

Abdulrahman, A. S., Ismail, M., & Hussain, M. S. (2011). Inhibiting sulphate attack on concrete by hydrophobic green plant extract. Advanced Materials Research, 250, 3837–3843.

Abo-El-Enein, S. A., Heikal, M., Amin, M. S., & Negm, H. H. (2013). Reactivity of dealuminated kaolin and burnt kaolin using cement kiln dust or hydrat-ed lime as activators. Construction and Building Materials, 47, 1451–1460. https://doi.org/10.1016/j.conbuildmat.2013.06.078

ACI. (2013). ACI 515.2R-13: Guide to Selecting Protective Treatments for Concrete. Manual of Concrete Practice, 1–29.

Aguiar, J. B., Camões, A., & Moreira, P. M. (2008). Coatings for concrete protection against aggressive environments. Journal of Advanced Concrete Technology, 6(1), 243–250. https://doi.org/10.3151/jact.6.243

Ahmed, M. M., Abadir, M. F., Yousef, A., & El-Naggar, K. A. M. (2021). The use of aluminum slag waste in the preparation of roof tiles. Materials Re-search Express, 8(12). https://doi.org/10.1088/2053-1591/ac3bf7

Alam, B., Afzal, S., Akbar, J., Ashraf, M., Shahzada, K., & Shabab, M. E. (2013). Mitigating sulphate attack in high performance concrete. Int. J. Adv. Struct. Geotech. Eng, 2, 11–15.

Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25(4-5 SPEC), 473–481. https://doi.org/10.1016/S0958-9465(02)00087-2

American Society for Testing and Materials Annual. (1992). “Annual Book of ASTM Standards.” Philadelphia, PA, USA, Sec., 4, 04–08.

Arunkumar, K., Muthukannan, M., Suresh Kumar, A., Chithambar Ganesh, A., & Kanniga Devi, R. (2023). Incorporation of Waste Wood Ash and Poly-propylene Fibre on the Production of Sustainable GPC. In Recent Advances in Structural Engineering and Construction Management (pp. 693–707). Springer.

ASTM, B. (2002). 311-93. Density Determination for Power Metallurgy (P/M) Materials Containing Less than Two Percent Porosity, Annual Book of ASTM Standards,(Nonferrous Metal Products, Metallic and Inorganic Coatings, Metal Powders, Sintered P/M Structural Parts), 2, 86–89.

ASTM C1012/C1012M-15. (2015). Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution. ASTM Interna-tional, West Conshohocken, PA, Vol. 11, pp. 5–9. ASTM International West Conshohocken, PA, USA.

ASTM Committee C01.10. (2011). ASTM C1157-11 Standard Performance Specification for Hydraulic Cement. Annual Book of ASTM Standards Vol-ume 04.01, pp. 1–5. ASTM International West Conshohocken, Pa.

ASTM International. (2012). ASTM C62-12 : Standard Specification for Building Brick (Solid Masonry Units Made From Clay or Shale). ASTM Int., 10–13.

Aygörmez, Y., & Canpolat, O. (2021). Long-term sulfuric and hydrochloric acid resistance of silica fume and colemanite waste reinforced metakaolin-based geopolymers. Revista de La Construccion, 20(2), 291–407. https://doi.org/10.7764/RDLC.20.2.72

Bendary H.A., Abadir M.F., Moselhy H., G. H. B. . (2017). Effect of alum waste addition on the fluidity, initial and finial setting and compressive strength of ordinary Portland cement mortar. International Journal of Chemical Engineering Research., 9(1), 89–98. Retrieved from https://www.ripublication.com/ijcher17/ijcherv9n1_07.pdf

Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., & Polder, R. B. (2013). Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons.

Castillo, M., Hernández, K., Rodriguez, J., & Eyzaguirre, C. (2020). Low permeability concrete for buildings located in marine atmosphere zone using clay brick powder. IOP Conference Series: Materials Science and Engineering, 758(1), 12093. IOP Publishing.

Cement, A. S. for T. and M. C. C.-1 on. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). ASTM International.

Chatveera, B., & Lertwattanaruk, P. (2009). Evaluation of sulfate resistance of cement mortars containing black rice husk ash. Journal of Environmental Management, 90(3), 1435–1441. https://doi.org/10.1016/j.jenvman.2008.09.001

Choi, S.-Y., Choi, Y.-S., & Yang, E.-I. (2016). Characteristics of calcium leaching resistance for concrete mixed with mineral admixture. Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 59–67.

Colina, F. G., & Llorens, J. (2007). Study of the dissolution of dealuminated kaolin in sodium–potassium hydroxide during the gel formation step in zeolite X synthesis. Microporous and Mesoporous Materials, 100(1–3), 302–311.

De Sensale, G. R. (2010). Effect of rice-husk ash on durability of cementitious materials. Cement and Concrete Composites, 32(9), 718–725.

Dinakar, P., Babu, K. G., & Santhanam, M. (2008). Durability properties of high volume fly ash self compacting concretes. Cement and Concrete Compo-sites, 30(10), 880–886.

El-Naggar, K. A. M., Amin, S. K., El-Sherbiny, S. A., & Abadir, M. F. (2019). Preparation of geopolymer insulating bricks from waste raw materials. Con-struction and Building Materials, 222, 699–705. https://doi.org/10.1016/j.conbuildmat.2019.06.182

Khalil, N. M. (2001). Refractory aspects of Egyptian alum-waste material. Ceramics International, 27(6), 695–700. https://doi.org/10.1016/S0272-8842(01)00022-0

Kuhail, Z., & Shihada, S. (2015). Permeability and chloride penetration of concrete subjected to Gaza seawater exposures. IUG Journal of Natural Studies, 9(2).

Lamond, J. F., & Pielert, J. H. (2006). Significance of tests and properties of concrete and concrete-making materials (Vol. 169). ASTM international.

Materials, R. (1998). Standard Test Method for Particle Size or Screen Analysis at No . 4 ( 4 . 75-mm ) Sieve and Coarser for Metal-Bearing Ores and Related Materials 1. Analytical Chemistry, 14(4), 3–5. https://doi.org/10.1520/E0389-13.2

McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit operations of chemical engineering (Vol. 5). McGraw-hill New York.

Merida, A., & Kharchi, F. (2015). Pozzolan concrete durability on sulphate attack. Procedia Engineering, 114, 832–837.

Moffatt, E. G., Thomas, M. D. A., & Fahim, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Re-search, 102, 127–135.

Mohamadien, H. A. (2012). The effect of marble powder and silica fume as partial replacement for cement on mortar. International Journal of Civil & Structural Engineering, 3(2), 418–428.

Montemor, M. F., Simoes, A. M. P., & Salta, M. M. (2000). Effect of fly ash on concrete reinforcement corrosion studied by EIS. Cement and Concrete Composites, 22(3), 175–185.

Mostafa, N. Y., Mohsen, Q., El-Hemaly, S. A. S., El-Korashy, S. A., & Brown, P. W. (2010). High replacements of reactive pozzolan in blended cements: Microstructure and mechanical properties. Cement and Concrete Composites, 32(5), 386–391. https://doi.org/10.1016/j.cemconcomp.2010.02.003

Nath, P., & Sarker, P. (2011). Effect of fly ash on the durability properties of high strength concrete. Procedia Engineering, 14, 1149–1156.

Rendell, F., & Jauberthie, R. (1999). Deterioration of mortar in sulphate environments. Construction and Building Materials, 13(6), 321–327. https://doi.org/10.1016/S0950-0618(99)00031-8

Robbins, D. B., & Lebel, L. B. (2016). Developing State-of-the-Art Marine Concrete Repair. In Ports 2016 (pp. 441–450).

Rozière, E., Loukili, A., El Hachem, R., & Grondin, F. (2009). Durability of concrete exposed to leaching and external sulphate attacks. Cement and Con-crete Research, 39(12), 1188–1198.

Salam, N. F. A., Ghaly, S. T., Abadir, M. F., & Amin, S. K. (2022). Preparation of geopolymer bricks from alum waste. Egyptian Journal of Chemistry, 65(2), 71–80. https://doi.org/10.21608/EJCHEM.2021.80201.3974

Skalny, J., Marchand, J., & Odler, I. (2003). Sulfate attack on concrete. Taylor & Francis.

Tahri, W., Abdollahnejad, Z., Mendes, J., Pacheco-Torgal, F., & de Aguiar, J. B. (2017). Cost efficiency and resistance to chemical attack of a fly ash geopolymeric mortar versus epoxy resin and acrylic paint coatings. European Journal of Environmental and Civil Engineering, 21(5), 555–571. https://doi.org/10.1080/19648189.2015.1134674

Thomas, M. (2016). The durability of concrete for marine construction. In Marine Concrete Structures (pp. 151–170). Elsevier. https://doi.org/10.1016/b978-0-08-100081-6.00006-4

Trostbl, L. J., & Wynne, D. J. (1940). Determination of Quartz (Free Silica) in Refractory Clays. Journal of the American Ceramic Society, 23(1), 18–22. https://doi.org/10.1111/j.1151-2916.1940.tb14187.x

Venkatanarayanan, H. K., & Rangaraju, P. R. (2014). Evaluation of sulfate resistance of Portland cement mortars containing low-carbon rice husk ash. Journal of Materials in Civil Engineering, 26(4), 582–592.

Wadell, H. (1935). Volume, Shape, and Roundness of Quartz Particles. The Journal of Geology, 43(3), 250–280. https://doi.org/10.1086/624298

Zahra, T. (2014). Performance of different types of cements in marine environment. Proceedings of the 2014 International Conference Civil Engineering for Sustainability and Resilience, CESARE’14, 17–22. Jordan University of Science and Technology (JUST).

Downloads

Published

2023-09-01

How to Cite

Hazem I. Bendary, Heikal, M. ., Ali , M. A. ., Djamel Ghernaout, & Elboughdiri, N. (2023). Feasibility study of dealuminated kaolin utilization in marine constructions. Revista De La Construcción. Journal of Construction, 22(2), 509–522. https://doi.org/10.7764/RDLC.22.2.509